scholarly journals Electroretinogram responses in myopia: a review

Author(s):  
Satish Kumar Gupta ◽  
Ranjay Chakraborty ◽  
Pavan Kumar Verkicharla

AbstractThe stretching of a myopic eye is associated with several structural and functional changes in the retina and posterior segment of the eye. Recent research highlights the role of retinal signaling in ocular growth. Evidence from studies conducted on animal models and humans suggests that visual mechanisms regulating refractive development are primarily localized at the retina and that the visual signals from the retinal periphery are also critical for visually guided eye growth. Therefore, it is important to study the structural and functional changes in the retina in relation to refractive errors. This review will specifically focus on electroretinogram (ERG) changes in myopia and their implications in understanding the nature of retinal functioning in myopic eyes. Based on the available literature, we will discuss the fundamentals of retinal neurophysiology in the regulation of vision-dependent ocular growth, findings from various studies that investigated global and localized retinal functions in myopia using various types of ERGs.

2010 ◽  
Vol 22 (5) ◽  
pp. 888-902 ◽  
Author(s):  
Marco Tamietto ◽  
Franco Cauda ◽  
Luca Latini Corazzini ◽  
Silvia Savazzi ◽  
Carlo A. Marzi ◽  
...  

Following destruction or deafferentation of primary visual cortex (area V1, striate cortex), clinical blindness ensues, but residual visual functions may, nevertheless, persist without perceptual consciousness (a condition termed blindsight). The study of patients with such lesions thus offers a unique opportunity to investigate what visual capacities are mediated by the extrastriate pathways that bypass V1. Here we provide evidence for a crucial role of the collicular–extrastriate pathway in nonconscious visuomotor integration by showing that, in the absence of V1, the superior colliculus (SC) is essential to translate visual signals that cannot be consciously perceived into motor outputs. We found that a gray stimulus presented in the blind field of a patient with unilateral V1 loss, although not consciously seen, can influence his behavioral and pupillary responses to consciously perceived stimuli in the intact field (implicit bilateral summation). Notably, this effect was accompanied by selective activations in the SC and in occipito-temporal extrastriate areas. However, when instead of gray stimuli we presented purple stimuli, which predominantly draw on S-cones and are thus invisible to the SC, any evidence of implicit visuomotor integration disappeared and activations in the SC dropped significantly. The present findings show that the SC acts as an interface between sensory and motor processing in the human brain, thereby providing a contribution to visually guided behavior that may remain functionally and anatomically segregated from the geniculo-striate pathway and entirely outside conscious visual experience.


2020 ◽  
pp. bjophthalmol-2020-316406
Author(s):  
Ian Flitcroft ◽  
Sara Mccullough ◽  
Kathryn Saunders

Background/AimsBoth eyes of one individual share the same environment and genes. We examined interocular differences in biometry to determine the potential role of other factors in refractive development.Methods362 subjects (6–7 years) from the Northern Ireland Childhood Errors of Refraction study were studied. Cycloplegic autorefraction was measured with a Shin-Nippon open-field autorefractor. Axial length and corneal curvature were measured with a Zeiss IOLMaster.Results257 subjects had an interocular difference of <0.50 D (ISO group) and 105 (29%) a difference of ≥0.50 D (ANISO group). Twenty-five subjects (6.9%) had anisometropia ≥1.00 D and 9 (2.5%) had anisometropia ≥1.50 D. The two groups, ISO and ANISO, showed different refractive distributions (p=0.001) with the ISO group showing a nearly Gaussian distribution and the ANISO group showing positive skew, a hyperopic shift and a bi-Gaussian distribution. A marker of emmetropisation is the poor correlation between refraction and corneal curvature seen in older children. There was no significant correlation between refraction and corneal curvature of each eye in the ISO group (r=0.09, p=0.19), but these parameters were significantly correlated in the ANISO group (r=0.28, p=0.004).ConclusionIn young children, small degrees of anisometropia (≥0.5 D) are associated with impaired emmetropisation. This suggests that anisometropia is a marker for poorly regulated eye growth, indicating that, in addition to environmental and genetic influences on eye growth, stochastic processes contribute to refractive outcomes.


2020 ◽  
pp. 1-9
Author(s):  
Anaisa Valido Ferreira ◽  
Jorge Domiguéz-Andrés ◽  
Mihai Gheorghe Netea

Immunological memory is classically attributed to adaptive immune responses, but recent studies have shown that challenged innate immune cells can display long-term functional changes that increase nonspecific responsiveness to subsequent infections. This phenomenon, coined <i>trained immunity</i> or <i>innate immune memory</i>, is based on the epigenetic reprogramming and the rewiring of intracellular metabolic pathways. Here, we review the different metabolic pathways that are modulated in trained immunity. Glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, amino acid, and lipid metabolism are interplaying pathways that are crucial for the establishment of innate immune memory. Unraveling this metabolic wiring allows for a better understanding of innate immune contribution to health and disease. These insights may open avenues for the development of future therapies that aim to harness or dampen the power of the innate immune response.


Author(s):  
Shanna Hamilton ◽  
Roland Veress ◽  
Andriy Belevych ◽  
Dmitry Terentyev

AbstractSudden cardiac death due to malignant ventricular arrhythmias remains the major cause of mortality in the postindustrial world. Defective intracellular Ca2+ homeostasis has been well established as a key contributing factor to the enhanced propensity for arrhythmia in acquired cardiac disease, such as heart failure or diabetic cardiomyopathy. More recent advances provide a strong basis to the emerging view that hereditary cardiac arrhythmia syndromes are accompanied by maladaptive remodeling of Ca2+ homeostasis which substantially increases arrhythmic risk. This brief review will focus on functional changes in elements of Ca2+ handling machinery in cardiomyocytes that occur secondary to genetic mutations associated with catecholaminergic polymorphic ventricular tachycardia, and long QT syndrome.


2019 ◽  
Vol 5 (1) ◽  
pp. 247-268 ◽  
Author(s):  
Peter Thier ◽  
Akshay Markanday

The cerebellar cortex is a crystal-like structure consisting of an almost endless repetition of a canonical microcircuit that applies the same computational principle to different inputs. The output of this transformation is broadcasted to extracerebellar structures by way of the deep cerebellar nuclei. Visually guided eye movements are accommodated by different parts of the cerebellum. This review primarily discusses the role of the oculomotor part of the vermal cerebellum [the oculomotor vermis (OMV)] in the control of visually guided saccades and smooth-pursuit eye movements. Both types of eye movements require the mapping of retinal information onto motor vectors, a transformation that is optimized by the OMV, considering information on past performance. Unlike the role of the OMV in the guidance of eye movements, the contribution of the adjoining vermal cortex to visual motion perception is nonmotor and involves a cerebellar influence on information processing in the cerebral cortex.


2009 ◽  
Vol 101 (6) ◽  
pp. 2889-2897 ◽  
Author(s):  
Andre Kaminiarz ◽  
Kerstin Königs ◽  
Frank Bremmer

Different types of fast eye movements, including saccades and fast phases of optokinetic nystagmus (OKN) and optokinetic afternystagmus (OKAN), are coded by only partially overlapping neural networks. This is a likely cause for the differences that have been reported for the dynamic parameters of fast eye movements. The dependence of two of these parameters—peak velocity and duration—on saccadic amplitude has been termed “main sequence.” The main sequence of OKAN fast phases has not yet been analyzed. These eye movements are unique in that they are generated by purely subcortical control mechanisms and that they occur in complete darkness. In this study, we recorded fast phases of OKAN and OKN as well as visually guided and spontaneous saccades under identical background conditions because background characteristics have been reported to influence the main sequence of saccades. Our data clearly show that fast phases of OKAN and OKN differ with respect to their main sequence. OKAN fast phases were characterized by their lower peak velocities and longer durations compared with those of OKN fast phases. Furthermore we found that the main sequence of spontaneous saccades depends heavily on background characteristics, with saccades in darkness being slower and lasting longer. On the contrary, the main sequence of visually guided saccades depended on background characteristics only very slightly. This implies that the existence of a visual saccade target largely cancels out the effect of background luminance. Our data underline the critical role of environmental conditions (light vs. darkness), behavioral tasks (e.g., spontaneous vs. visually guided), and the underlying neural networks for the exact spatiotemporal characteristics of fast eye movements.


2005 ◽  
Vol 93 (1) ◽  
pp. 519-534 ◽  
Author(s):  
Masayuki Watanabe ◽  
Yasushi Kobayashi ◽  
Yuka Inoue ◽  
Tadashi Isa

To examine the role of competitive and cooperative neural interactions within the intermediate layer of superior colliculus (SC), we elevated the basal SC neuronal activity by locally injecting a cholinergic agonist nicotine and analyzed its effects on saccade performance. After microinjection, spontaneous saccades were directed toward the movement field of neurons at the injection site (affected area). For visually guided saccades, reaction times were decreased when targets were presented close to the affected area. However, when visual targets were presented remote from the affected area, reaction times were not increased regardless of the rostrocaudal level of the injection sites. The endpoints of visually guided saccades were biased toward the affected area when targets were presented close to the affected area. After this endpoint effect diminished, the trajectories of visually guided saccades remained modestly curved toward the affected area. Compared with the effects on endpoints, the effects on reaction times were more localized to the targets close to the affected area. These results are consistent with a model that saccades are triggered by the activities of neurons within a restricted region, and the endpoints and trajectories of the saccades are determined by the widespread population activity in the SC. However, because increased reaction times were not observed for saccades toward targets remote from the affected area, inhibitory interactions in the SC may not be strong enough to shape the spatial distribution of the low-frequency preparatory activities in the SC.


10.1167/7.5.6 ◽  
2007 ◽  
Vol 7 (5) ◽  
pp. 6 ◽  
Author(s):  
Anne-Marie Brouwer ◽  
David C. Knill

2011 ◽  
Vol 63 (4) ◽  
pp. 921-932 ◽  
Author(s):  
Vesna Lackovic ◽  
Irena Tanaskovic ◽  
Dj. Radak ◽  
Vesna Nesic ◽  
Z. Gluvic ◽  
...  

Atherosclerosis represents a complex disease which encompasses all the components of the vascular wall. Nevertheless, according to all known theories of the pathogenesis of atherosclerosis, the key role in this process belongs to the endothelial cells, i.e. the changes that they are subjected to especially during the initial stage of the lesion. In this review we have attempted, according to the results of our continuous research and numerous data from available modern literature, to show the cytohistological characteristics of endothelial cells, as well as the changes they are subjected to in all stages of atherosclerosis. In the first part we have reviewed the ultrastructure, function and pathology of the endothelium, subcellular organization of the endothelial cells, their specific characteristics, micro compartments and intercellular junctions. In the second part we have described the morphological and functional changes of endothelial cells during atherosclerosis. Special attention is given to the role of endothelial cells in the development of the initial stage of lesion: endothelial dysfunction, factors that cause the increased expression of adhesion molecules in endothelial cells and mechanisms that cause leukocytes to migrate through the endothelial layer to subendothelial connective tissue in the early stage of atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document