Influence of rootstock genotype on efficacy of anaerobic soil disinfestation for control of apple nursery replant disease

2020 ◽  
Vol 157 (1) ◽  
pp. 39-57 ◽  
Author(s):  
Shashika S. Hewavitharana ◽  
Mark Mazzola
Plant Disease ◽  
2018 ◽  
Vol 102 (1) ◽  
pp. 209-219 ◽  
Author(s):  
G. Browne ◽  
N. Ott ◽  
A. Poret-Peterson ◽  
H. Gouran ◽  
B. Lampinen

Prunus replant disease (PRD) is an important soilborne complex that suppresses growth and productivity of replanted stone fruit and nut orchards. It is effectively managed with preplant soil fumigation but, due to regulatory challenges, nonfumigant-based control strategies for PRD and other soilborne disease problems may become increasingly important, especially in California. We examined the potential of preplant anaerobic soil disinfestation (ASD) for control of PRD in four repeated orchard replant trials on sandy loam soil near Parlier, CA. After removal of the old orchard trees, alternative ASD treatments, all using rice bran as the main carbon source, were implemented, starting in late September. The alternative treatments incorporated rice bran at (i) 20 t ha−1, alone, in 3.0-m-wide row strips; (ii) 20 t ha−1, preceded by incorporation of a sudangrass cover crop and followed by drip application of molasses (10 t ha−1), in 3.0-m-wide row strips; (iii) 20 t ha−1, alone, in 1.8-m-wide strips; or (iv) 12 t ha−1, alone, in 1.8-m-wide strips. All ASD-treated areas were covered with clear tarp and drip irrigated with 25 cm of water. Tarps remained for 6 weeks, during which the soil moisture level was kept at or above field capacity by drip irrigation. All trials included nontreated control and fumigated standard treatments. ASD raised temperature and reduced redox potential in soil at 15- and 46-cm depths for 6 weeks. Fumigation and ASD treatments both nearly eradicated bioassay inoculum of Pythium ultimum in the soil before almond trees were replanted and significantly affected almond tree root communities of fungi and oomycetes after planting. Fumigation treatments and ASD treatments with rice bran at 20 t ha−1 in 3.0-m strips increased tree growth significantly and by similar magnitudes. Among repeated experiments, mean increases in trunk cross-sectional area growth due to fumigation ranged from 137 to 264%, while the increases due to ASD at 20 t ha−1 in 3.0-m strips ranged from 148 to 214%, compared with controls. ASD offers effective control of PRD and is worthy of further optimization and testing for management of PRD and additional orchard replant problems.


2021 ◽  
Vol 9 (8) ◽  
pp. 1638
Author(s):  
Shashika S. Hewavitharana ◽  
Emmi Klarer ◽  
Joji Muramoto ◽  
Carol Shennan ◽  
Mark Mazzola

Charcoal rot and Fusarium wilt, caused by Macrophomina phaseolina and Fusarium oxysporum f. sp. fragariae, respectively, are major soil-borne diseases of strawberry that have caused significant crop losses in California. Anaerobic soil disinfestation has been studied as an industry-level option to replace soil fumigants to manage these serious diseases. Studies were conducted to discern whether Gramineae carbon input type, incubation temperature, or incubation duration influences the efficacy of this disease control tactic. In experiments conducted using ‘low rate’ amendment applications at moderate day/night temperatures (24/18 °C), and carbon inputs (orchard grass, wheat, and rice bran) induced an initial proliferation and subsequent decline in soil density of the Fusarium wilt pathogen. This trend coincided with the onset of anaerobic conditions and a corresponding generation of various anti-fungal compounds, including volatile organic acids, hydrocarbons, and sulfur compounds. Generation of these metabolites was associated with increases in populations of Clostridium spp. Overall, carbon input and incubation temperature, but not incubation duration, significantly influenced disease suppression. All Gramineae carbon inputs altered the soil microbiome and metabolome in a similar fashion, though the timing and maximum yield of specific metabolites varied with input type. Fusarium wilt and charcoal rot suppression were superior when anaerobic soil disinfestation was conducted using standard amendment rates of 20 t ha−1 at elevated temperatures combined with a 3-week incubation period. Findings indicate that anaerobic soil disinfestation can be further optimized by modulating carbon source and incubation temperature, allowing the maximum generation of antifungal toxic volatile compounds. Outcomes also indicate that carbon input and environmental variables may influence treatment efficacy in a target pathogen-dependent manner which will require pathogen-specific optimization of treatment protocols.


2017 ◽  
Vol 218 ◽  
pp. 105-116 ◽  
Author(s):  
Haichao Guo ◽  
Francesco Di Gioia ◽  
Xin Zhao ◽  
Monica Ozores-Hampton ◽  
Marilyn E. Swisher ◽  
...  

Author(s):  
Erin N. Rosskopf ◽  
Paula Serrano-Pérez ◽  
Jason Hong ◽  
Utsala Shrestha ◽  
María del Carmen Rodríguez-Molina ◽  
...  

2019 ◽  
Vol 48 (3) ◽  
pp. 633-640
Author(s):  
Diego J Nieto ◽  
Deborah K Letourneau ◽  
Lucy Toyama ◽  
Janet A Bryer ◽  
Caitlin Slay ◽  
...  

2017 ◽  
Vol 215 ◽  
pp. 38-48 ◽  
Author(s):  
Paula Serrano-Pérez ◽  
Erin Rosskopf ◽  
Ana De Santiago ◽  
María del Carmen Rodríguez-Molina

Sign in / Sign up

Export Citation Format

Share Document