Assessing Anaerobic Soil Disinfestation as a Control Tactic for Delia radicum (Diptera: Anthomyiidae) in California Brussels Sprouts

2019 ◽  
Vol 48 (3) ◽  
pp. 633-640
Author(s):  
Diego J Nieto ◽  
Deborah K Letourneau ◽  
Lucy Toyama ◽  
Janet A Bryer ◽  
Caitlin Slay ◽  
...  
2021 ◽  
Vol 9 (8) ◽  
pp. 1638
Author(s):  
Shashika S. Hewavitharana ◽  
Emmi Klarer ◽  
Joji Muramoto ◽  
Carol Shennan ◽  
Mark Mazzola

Charcoal rot and Fusarium wilt, caused by Macrophomina phaseolina and Fusarium oxysporum f. sp. fragariae, respectively, are major soil-borne diseases of strawberry that have caused significant crop losses in California. Anaerobic soil disinfestation has been studied as an industry-level option to replace soil fumigants to manage these serious diseases. Studies were conducted to discern whether Gramineae carbon input type, incubation temperature, or incubation duration influences the efficacy of this disease control tactic. In experiments conducted using ‘low rate’ amendment applications at moderate day/night temperatures (24/18 °C), and carbon inputs (orchard grass, wheat, and rice bran) induced an initial proliferation and subsequent decline in soil density of the Fusarium wilt pathogen. This trend coincided with the onset of anaerobic conditions and a corresponding generation of various anti-fungal compounds, including volatile organic acids, hydrocarbons, and sulfur compounds. Generation of these metabolites was associated with increases in populations of Clostridium spp. Overall, carbon input and incubation temperature, but not incubation duration, significantly influenced disease suppression. All Gramineae carbon inputs altered the soil microbiome and metabolome in a similar fashion, though the timing and maximum yield of specific metabolites varied with input type. Fusarium wilt and charcoal rot suppression were superior when anaerobic soil disinfestation was conducted using standard amendment rates of 20 t ha−1 at elevated temperatures combined with a 3-week incubation period. Findings indicate that anaerobic soil disinfestation can be further optimized by modulating carbon source and incubation temperature, allowing the maximum generation of antifungal toxic volatile compounds. Outcomes also indicate that carbon input and environmental variables may influence treatment efficacy in a target pathogen-dependent manner which will require pathogen-specific optimization of treatment protocols.


2017 ◽  
Vol 218 ◽  
pp. 105-116 ◽  
Author(s):  
Haichao Guo ◽  
Francesco Di Gioia ◽  
Xin Zhao ◽  
Monica Ozores-Hampton ◽  
Marilyn E. Swisher ◽  
...  

Author(s):  
Erin N. Rosskopf ◽  
Paula Serrano-Pérez ◽  
Jason Hong ◽  
Utsala Shrestha ◽  
María del Carmen Rodríguez-Molina ◽  
...  

2017 ◽  
Vol 215 ◽  
pp. 38-48 ◽  
Author(s):  
Paula Serrano-Pérez ◽  
Erin Rosskopf ◽  
Ana De Santiago ◽  
María del Carmen Rodríguez-Molina

2020 ◽  
Vol 135 ◽  
pp. 104846 ◽  
Author(s):  
Ram B. Khadka ◽  
Madan Marasini ◽  
Ranjana Rawal ◽  
Anna L. Testen ◽  
Sally A. Miller

2019 ◽  
Vol 80 (1) ◽  
pp. 191-201 ◽  
Author(s):  
Amisha T. Poret-Peterson ◽  
Nada Sayed ◽  
Nathaniel Glyzewski ◽  
Holly Forbes ◽  
Enid T. González-Orta ◽  
...  

AbstractAnaerobic soil disinfestation (ASD) is an organic amendment-based management tool for controlling soil-borne plant diseases and is increasingly used in a variety of crops. ASD results in a marked decrease in soil redox potential and other physicochemical changes, and a turnover in the composition of the soil microbiome. Mechanisms of ASD-mediated pathogen control are not fully understood, but appear to depend on the carbon source used to initiate the process and involve a combination of biological (i.e., release of volatile organic compounds) and abiotic (i.e., lowered pH, release of metal ions) factors. In this study, we examined how the soil microbiome changes over time in response to ASD initiated with rice bran, tomato pomace, or red grape pomace as amendments using growth chamber mesocosms that replicate ASD-induced field soil redox conditions. Within 2 days, the soil microbiome rapidly shifted from a diverse assemblage of taxa to being dominated by members of the Firmicutes for all ASD treatments, whereas control mesocosms maintained diverse and more evenly distributed communities. Rice bran and tomato pomace amendments resulted in microbial communities with similar compositions and trajectories that were different from red grape pomace communities. Quantitative PCR showed nitrogenase gene abundances were higher in ASD communities and tended to increase over time, suggesting the potential for altering soil nitrogen availability. These results highlight the need for temporal and functional studies to understand how pathogen suppressive microbial communities assemble and function in ASD-treated soils.


2019 ◽  
Vol 10 ◽  
Author(s):  
Shashika S. Hewavitharana ◽  
Emmi Klarer ◽  
Andrew J. Reed ◽  
Rachel Leisso ◽  
Brenton Poirier ◽  
...  

2020 ◽  
Vol 110 (4) ◽  
pp. 795-804
Author(s):  
Andres D. Sanabria-Velazquez ◽  
Anna L. Testen ◽  
Ram B. Khadka ◽  
Zhe Liu ◽  
Fuqing Xu ◽  
...  

Experiments were conducted to evaluate potential functional and mechanistic differences in the suppression of Sclerotinia sclerotiorum and S. minor and root-knot nematodes in muck soils by anaerobic soil disinfestation (ASD) using different carbon source amendments. Volatile compounds produced during ASD in muck soil amended with molasses, wheat bran, or mustard greens at 20.2 Mg/ha or a 2% ethanol solution significantly reduced the mycelial growth and number of sclerotia produced by both Sclerotinia spp. compared with the anaerobic control. In amended soils, acetic and butyric acids were detected in concentrations that reduced the viability of sclerotia of both pathogens. Higher concentrations of carbon dioxide were observed in ASD-treated soils, regardless of the amendment, than in the nonamended anaerobic control. Only amendment with wheat bran did not increase the production of methane gas during ASD compared with the controls. Meloidogyne hapla survival was completely suppressed in soils treated with ASD regardless of carbon source. Field trials were conducted in Ohio muck soil to assess survival of sclerotia of both Sclerotinia spp. The viability of sclerotia of both Sclerotinia spp. was significantly reduced in soil subjected to ASD amended with wheat bran (20.2 Mg/ha), molasses (10.1 Mg/ha), or wheat bran (20.2 Mg/ha) plus molasses (10.1 Mg/ha) compared with the controls. A consistent negative correlation between soil reduction and viability of sclerotia of both pathogens was observed. Wheat bran and molasses are both widely available amendments that can be used as ASD carbon sources for the management of soilborne pathogens in muck soils.


Sign in / Sign up

Export Citation Format

Share Document