Modelling Agriculture, Forestry and Other Land Use (AFOLU) in response to climate change scenarios for the SAARC nations

Author(s):  
Ram Kumar Singh ◽  
Vinay Shankar Prasad Sinha ◽  
Pawan Kumar Joshi ◽  
Manoj Kumar
Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 771
Author(s):  
Pak Shing Yeung ◽  
Jimmy Chi-Hung Fung ◽  
Chao Ren ◽  
Yong Xu ◽  
Kangning Huang ◽  
...  

Urbanization is one of the most significant contributing factors to anthropogenic climate change. However, a lack of projected city land use data has posed significant challenges to factoring urbanization into climate change modeling. Thus, the results from current models may contain considerable errors in estimating future climate scenarios. The Pearl River Delta region was selected as a case study to provide insight into how large-scale urbanization and different climate change scenarios impact the local climate. This study adopts projected land use data from freely available satellite imagery and applies dynamic simulation land use results to the Weather Research and Forecasting Model (WRF). The simulation periods cover the summer periods in 2010 and 2029–2031, the latter of which is averaged to represent the year 2030. The WRF simulation used the observed local climate conditions in 2010 to represent the current scenario and the projected local climate changes for 2030 as the future scenario. Under all three future climate change scenarios, the warming trend is prominent (around 1–2 °C increase), with a widespread reduction in wind speed in inland areas (1–2 ms−1). The vulnerability of human health to thermal stress was evaluated by adopting the wet-bulb globe temperature (WBGT). The results from the future scenarios suggest a high public health risk due to rising temperatures in the future. This study provides a methodology for a more comprehensive understanding of future urbanization and its impact on regional climate by using freely available satellite images and WRF simulation tools. The simulated temperature and WBGT results can serve local governments and stakeholders in city planning and the creation of action plans that will reduce the potential vulnerability of human health to excessive heat.


2020 ◽  
Vol 51 (5) ◽  
pp. 976-993
Author(s):  
Yuhui Yan ◽  
Baolin Xue ◽  
Yinglan A ◽  
Wenchao Sun ◽  
Hanwen Zhang

Abstract Quantification of runoff change is vital for water resources management, especially in arid or semiarid areas. This study used the Soil and Water Assessment Tool (SWAT) distributed hydrological model to simulate runoff in the upper reaches of the Hailar Basin (NE China) and to analyze quantitatively the impacts of climate change and land-use change on runoff by setting different scenarios. Two periods, i.e., the reference period (before 1988) and the interference period (after 1988), were identified based on long-term runoff datasets. In comparison with the reference period, the contribution rates of both climate change and land-use change to runoff change in the Hailar Basin during the interference period were 83.58% and 16.42%, respectively. The simulation analysis of climate change scenarios with differential precipitation and temperature changes suggested that runoff changes are correlated positively with precipitation change and that the impact of precipitation change on runoff is stronger than that of temperature. Under different economic development scenarios adopted, land use was predicted to have a considerable impact on runoff. The expansion of forests within the basin might induce decreased runoff owing to enhanced evapotranspiration.


2019 ◽  
Vol 11 (24) ◽  
pp. 7083 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Stefanie Steinbach ◽  
...  

Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.


2020 ◽  
Author(s):  
Francesca Moschini ◽  
Iacopo Federico Ferrario ◽  
Barbara Hofmann

<p>Quantifying how land-use change affects hydrological components is a challenge in hydrological science. It is not yet clear how changes in land use relate to runoff extremes and why some catchments are more sensitive to land-use change than others. Identifying which areas are hydrologically more sensitive to land-use change can lead to better land-use planning, reduction of the impacts of extreme rainfall events and extended dry periods. In this study we aim to quantify how land-use change and climate change are affecting the hydrological response of  Vietnam’s basins. Over the past decades the country’s land use has shifted from forest to agriculture, with very high production of rice, coffee, tea, pepper and sugar cane.</p><p>We combine the historical, the Intergovernmental Panel on Climate Change’s (IPCC) Representative Concentration Pathway (RCP) RCP4.5 and RCP8.5 climate change scenarios developed for Vietnam, with two different land cover maps (from the years 1992 and 2017). The combined and separate effect of land use and climate change are assessed and the most sensitive to change areas are identified. The Variable infiltration Capacity (VIC) surface water and energy balance model applied here is a grid-based model that calculates evapotranspiration, runoff, base flow, soil moisture and other hydrological fluxes. Surface heterogeneity within VIC is represented by a tiled approach, whereby the surface of each grid-box comprises fractions of the different surface types. For each surface type of the grid-box, the energy and water balances are solved, and a weighted average is calculated from the individual surface fluxes for each grid-box. Hydrological fluxes were compared for each grid cell and basin to analyse the degree of difference between the scenarios.</p><p>Significant changes in future hydrologic fluxes arise under both climate change scenarios pointing towards a severe increase in hydrological extremes. The changes in all the examined hydrological components are greater in the combined land-use and climate change experiments.</p>


2014 ◽  
Vol 7 (5) ◽  
pp. 2359-2391 ◽  
Author(s):  
E. D. Keller ◽  
W. T. Baisden ◽  
L. Timar ◽  
B. Mullan ◽  
A. Clark

Abstract. We adapt and integrate the Biome-BGC and Land Use in Rural New Zealand models to simulate pastoral agriculture and to make land-use change, intensification of agricultural activity and climate change scenario projections of New Zealand's pasture production at time slices centred on 2020, 2050 and 2100, with comparison to a present-day baseline. Biome-BGC model parameters are optimised for pasture production in both dairy and sheep/beef farm systems, representing a new application of the Biome-BGC model. Results show up to a 10% increase in New Zealand's national pasture production in 2020 under intensification and a 1–2% increase by 2050 from economic factors driving land-use change. Climate change scenarios using statistically downscaled global climate models (GCMs) from the IPCC Fourth Assessment Report also show national increases of 1–2% in 2050, with significant regional variations. Projected out to 2100, however, these scenarios are more sensitive to the type of pasture system and the severity of warming: dairy systems show an increase in production of 4% under mild change but a decline of 1% under a more extreme case, whereas sheep/beef production declines in both cases by 3 and 13%, respectively. Our results suggest that high-fertility systems such as dairying could be more resilient under future change, with dairy production increasing or only slightly declining in all of our scenarios. These are the first national-scale estimates using a model to evaluate the joint effects of climate change, CO2 fertilisation and N-cycle feedbacks on New Zealand's unique pastoral production systems that dominate the nation's agriculture and economy. Model results emphasise that CO2 fertilisation and N-cycle feedback effects are responsible for meaningful differences in agricultural systems. More broadly, we demonstrate that our model output enables analysis of decoupled land-use change scenarios: the Biome-BGC data products at a national or regional level can be re-sampled quickly and cost-effectively for specific land-use change scenarios and future projections.


2019 ◽  
Vol 74 ◽  
pp. 1-24 ◽  
Author(s):  
Iona Stoicescu ◽  
Ileana Pătru-Stupariu ◽  
Constantina Alina Hossu ◽  
Alexander Peringer

The biodiversity of wood-pastures depends on a balance between human interference and natural vegetation succession, which however is undergoing changes driven by socio-economic factors and climate change. Widely spread throughout Europe, wood-pastures were subject to either intensification or abandonment, leading to habitat segregation and loss. This is currently the fate of large Romanian remnant woodpastures and climate warming further complicates management adaptation.In a series of simulation experiments, we compared the long-term effects of different land use and climate change scenarios on the habitat diversity of a wood-pasture in the Southern Carpathians (Fundata village, Romania). We tested livestock densities according to management guidelines, complemented with shrub-cutting in order to maintain a structurally-diverse landscape with high habitat values in the light of climate change. We found that significant losses of open pastureland and inclusion into forest, as well as landscape structural simplification and loss of complex habitats can be expected from climate warming, with more severe consequences in a hotter climate perspective. We arguefor the re-establishment of the traditional multi-use of wood-pastures at optimum livestock densities in combination with low-intensity shrubcutting, because our study demonstrated that traditional practices offer a balanced compromise between agricultural use and maintaining habitat mosaics that are robust to climate change.


Sign in / Sign up

Export Citation Format

Share Document