scholarly journals Introducing pre-impact air-cushioning effects into the Wagner model of impact theory

2021 ◽  
Vol 129 (1) ◽  
Author(s):  
Matthew R. Moore

AbstractIn this analysis, we consider the effects of non-quiescent initial conditions driven by pre-impact air–water interactions on the classical Wagner model of impact theory. We consider the problem of a rigid, solid impactor moving vertically towards a liquid pool. Prior to impact, viscous forces in the air act to deform the liquid free surface, inducing a flow in the pool. These interactions are then incorporated as initial conditions in the post-impact analysis. We derive expressions for the size of the effective contact set, the leading-order pressure and force on the impactor, and the speed and thickness of the jet at its base. In all cases, we show that the effect of the pre-impact behaviour is to cushion the impactor, reducing the size of the effective contact set and, hence, the force on the impactor. Small- and large-time asymptotic solutions are derived for general power-law impactors, and we show that the effects of the air die away as the impact progresses, so that we approach the classical Wagner solution.

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 713
Author(s):  
Jun-Cheng Li ◽  
Gang Chen ◽  
Feng-Lei Huang ◽  
Yong-Gang Lu

This study focused on the impact load produced by a projectile and its potential application in the Taylor impact test. Taylor impact tests were designed and carried out for projectiles with four types of nose shapes, and the impact deformation characteristics and variation of the impact load as a function of the nose shape and impact velocity were studied. The overall high g loading experienced by the projectile body during the impact was discussed, and based on classical Taylor impact theory, impact analysis models for the various nose-shape projectiles were established and the causes of the different impact load pulse shapes were analyzed. This study reveals that the nose shape has a significant effect on the impact load waveform and pulse duration characteristics, while the impact velocity primarily affects the peak value of the impact load. Thus, the loading of specific impact environments could be regulated by the projectile nose shape design and impact velocity control, and the impact load could be simulated. Research results support the assumption that the Taylor impact test can be applied to high g loading test.


1999 ◽  
Vol 121 (1) ◽  
pp. 128-135 ◽  
Author(s):  
D. Wang ◽  
C. Conti ◽  
D. Beale

A new computer aided analysis method for frictionless impact problems due to interference between two bodies in a constrained multibody system is presented in this paper. A virtual contact joint concept is used to detect interference between two bodies and calculate the jump in the body momenta, velocity discontinuities and rebounds. The interference surfaces can be described by the joint coordinates of the virtual contact joint, which are very useful for determining the impact time, the types and positions of two impact surfaces and impact initial conditions when an interference happens between two bodies.


2013 ◽  
Vol 705 ◽  
pp. 540-545
Author(s):  
Svetlana Polukoshko

The impact phenomenon may be used for task-oriented changing of rigid body motion. When moving body encounters with some obstacle all parameters of motion are changing as a result of impact and trajectory and type of motion are also changing. In this work the conversion of translatory motion of prismatic rigid body into plane or rotation and conversion of plane motion of cylindrical body due to impact are considered. The conditions of conversion of one type of motion into another and parameters post-impact motion are studied. Problems are solved in the framework of rigid body motion, using rigid body impact theory. Studying of such phenomena is important for location of parts on industrial conveyors, feeders, etc.


The university is considered one of the engines of growth in a local economy or its market area, since its direct contributions consist of 1) employment of faculty and staff, 2) services to students, and supply chain links vendors, all of which define the University’s Market area. Indirect contributions consist of those agents associated with the university in terms of community and civic events. Each of these activities represent economic benefits to their host communities and can be classified as the economic impact a university has on its local economy and whose spatial market area includes each of the above agents. In addition are the critical links to the University, which can be considered part of its Demand and Supply chain. This paper contributes to the field of Public/Private Impact Analysis, which is used to substantiate the social and economic benefits of cooperating for economic resources. We use Census data on Output of Goods and Services, Labor Income on Salaries, Wages and Benefits, Indirect State and Local Taxes, Property Tax Revenue, Population, and Inter-Industry to measure economic impact (Implan, 2016).


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
MATHALA JULIET GUPTA ◽  
ASHISH M. PITRE ◽  
SUMATI CHAVAN PANDURNAG ◽  
SALONI SALIL VANJARI

This paper assessed the impact of the mechanization of the 8 tribal paddy farmers’ groups of Goa benefited in the year 2011 through the Tribal sub-plan program of ICAR-CCARI through results of surveys conducted in 2012 and 2015. Shift to mechanization among beneficiaries was significant in power tillers (64-100%) but less in power reapers(0-91%). Also significant saving in manpower (Power tillers:33.3% to 60%, power reapers: 33.3% to 83.3%), , time (field capacity increased (power tillers : 41.7% to141%, power reapers :58.1% to 912.8%) and cost(power tillers :44.7% to 59.1%, power reapers : 57.8% to 82.9%) was reportedthrough the use of equipment as compared to desi plough or manual methods of harvesting. Some constraints like lack of access roads and training in use and maintenance of the equipment were reported by the beneficiary farmers.


The theory of the vibrations of the pianoforte string put forward by Kaufmann in a well-known paper has figured prominently in recent discussions on the acoustics of this instrument. It proceeds on lines radically different from those adopted by Helmholtz in his classical treatment of the subject. While recognising that the elasticity of the pianoforte hammer is not a negligible factor, Kaufmann set out to simplify the mathematical analysis by ignoring its effect altogether, and treating the hammer as a particle possessing only inertia without spring. The motion of the string following the impact of the hammer is found from the initial conditions and from the functional solutions of the equation of wave-propagation on the string. On this basis he gave a rigorous treatment of two cases: (1) a particle impinging on a stretched string of infinite length, and (2) a particle impinging on the centre of a finite string, neither of which cases is of much interest from an acoustical point of view. The case of practical importance treated by him is that in which a particle impinges on the string near one end. For this case, he gave only an approximate theory from which the duration of contact, the motion of the point struck, and the form of the vibration-curves for various points of the string could be found. There can be no doubt of the importance of Kaufmann’s work, and it naturally becomes necessary to extend and revise his theory in various directions. In several respects, the theory awaits fuller development, especially as regards the harmonic analysis of the modes of vibration set up by impact, and the detailed discussion of the influence of the elasticity of the hammer and of varying velocities of impact. Apart from these points, the question arises whether the approximate method used by Kaufmann is sufficiently accurate for practical purposes, and whether it may be regarded as applicable when, as in the pianoforte, the point struck is distant one-eighth or one-ninth of the length of the string from one end. Kaufmann’s treatment is practically based on the assumption that the part of the string between the end and the point struck remains straight as long as the hammer and string remain in contact. Primâ facie , it is clear that this assumption would introduce error when the part of the string under reference is an appreciable fraction of the whole. For the effect of the impact would obviously be to excite the vibrations of this portion of the string, which continue so long as the hammer is in contact, and would also influence the mode of vibration of the string as a whole when the hammer loses contact. A mathematical theory which is not subject to this error, and which is applicable for any position of the striking point, thus seems called for.


2021 ◽  
Vol 11 (9) ◽  
pp. 4136
Author(s):  
Rosario Pecora

Oleo-pneumatic landing gear is a complex mechanical system conceived to efficiently absorb and dissipate an aircraft’s kinetic energy at touchdown, thus reducing the impact load and acceleration transmitted to the airframe. Due to its significant influence on ground loads, this system is generally designed in parallel with the main structural components of the aircraft, such as the fuselage and wings. Robust numerical models for simulating landing gear impact dynamics are essential from the preliminary design stage in order to properly assess aircraft configuration and structural arrangements. Finite element (FE) analysis is a viable solution for supporting the design. However, regarding the oleo-pneumatic struts, FE-based simulation may become unpractical, since detailed models are required to obtain reliable results. Moreover, FE models could not be very versatile for accommodating the many design updates that usually occur at the beginning of the landing gear project or during the layout optimization process. In this work, a numerical method for simulating oleo-pneumatic landing gear drop dynamics is presented. To effectively support both the preliminary and advanced design of landing gear units, the proposed simulation approach rationally balances the level of sophistication of the adopted model with the need for accurate results. Although based on a formulation assuming only four state variables for the description of landing gear dynamics, the approach successfully accounts for all the relevant forces that arise during the drop and their influence on landing gear motion. A set of intercommunicating routines was implemented in MATLAB® environment to integrate the dynamic impact equations, starting from user-defined initial conditions and general parameters related to the geometric and structural configuration of the landing gear. The tool was then used to simulate a drop test of a reference landing gear, and the obtained results were successfully validated against available experimental data.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Meng-Chun Chang ◽  
Rebecca Kahn ◽  
Yu-An Li ◽  
Cheng-Sheng Lee ◽  
Caroline O. Buckee ◽  
...  

Abstract Background As COVID-19 continues to spread around the world, understanding how patterns of human mobility and connectivity affect outbreak dynamics, especially before outbreaks establish locally, is critical for informing response efforts. In Taiwan, most cases to date were imported or linked to imported cases. Methods In collaboration with Facebook Data for Good, we characterized changes in movement patterns in Taiwan since February 2020, and built metapopulation models that incorporate human movement data to identify the high risk areas of disease spread and assess the potential effects of local travel restrictions in Taiwan. Results We found that mobility changed with the number of local cases in Taiwan in the past few months. For each city, we identified the most highly connected areas that may serve as sources of importation during an outbreak. We showed that the risk of an outbreak in Taiwan is enhanced if initial infections occur around holidays. Intracity travel reductions have a higher impact on the risk of an outbreak than intercity travel reductions, while intercity travel reductions can narrow the scope of the outbreak and help target resources. The timing, duration, and level of travel reduction together determine the impact of travel reductions on the number of infections, and multiple combinations of these can result in similar impact. Conclusions To prepare for the potential spread within Taiwan, we utilized Facebook’s aggregated and anonymized movement and colocation data to identify cities with higher risk of infection and regional importation. We developed an interactive application that allows users to vary inputs and assumptions and shows the spatial spread of the disease and the impact of intercity and intracity travel reduction under different initial conditions. Our results can be used readily if local transmission occurs in Taiwan after relaxation of border control, providing important insights into future disease surveillance and policies for travel restrictions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaobin Wang ◽  
Yun Tong ◽  
Yupeng Fan ◽  
Haimeng Liu ◽  
Jun Wu ◽  
...  

AbstractSince spring 2020, the human world seems to be exceptionally silent due to mobility reduction caused by the COVID-19 pandemic. To better measure the real-time decline of human mobility and changes in socio-economic activities in a timely manner, we constructed a silent index (SI) based on Google’s mobility data. We systematically investigated the relations between SI, new COVID-19 cases, government policy, and the level of economic development. Results showed a drastic impact of the COVID-19 pandemic on increasing SI. The impact of COVID-19 on human mobility varied significantly by country and place. Bi-directional dynamic relationships between SI and the new COVID-19 cases were detected, with a lagging period of one to two weeks. The travel restriction and social policies could immediately affect SI in one week; however, could not effectively sustain in the long run. SI may reflect the disturbing impact of disasters or catastrophic events on the activities related to the global or national economy. Underdeveloped countries are more affected by the COVID-19 pandemic.


Sign in / Sign up

Export Citation Format

Share Document