scholarly journals Environmental and economic sustainability in public contexts: the impact of hand-drying options on waste management, carbon emissions and operating costs

Author(s):  
Graziano Coller ◽  
Marco Schiavon ◽  
Marco Ragazzi

AbstractDue to the high density of users hosted everyday, public buildings are important producers of waste and emissions of greenhouse gases (GHGs). Public restrooms play an underrated role in waste generation and GHG emissions, especially if paper towels are used as the hand-drying method. The choice of the hand-drying method (i.e., paper towels vs. electrical hand dryers) also affects the economic balance of a public institution, involving costs for the purchase of hand-drying materials/apparatuses, energy and waste disposal. The present paper aims at evaluating the economic and environmental impact of the introduction of electrical hand dryers (alternative scenario) in place of paper towels (reference scenario) in a public building. The paper presents a solid methodology, based on a numerical experiment approach, to identify a decision criterion for establishing the economical convenience of adopting the alternative scenario in public restrooms. Key factors affecting the choice between the proposed alternatives are presented and discussed in a dedicated sensitivity analysis. From the environmental point of view, this study evaluates the impact of each scenario in terms of GHG emissions, related to multiple waste treatment options and different electric grid mixes. Based on the experimental assumptions, the method allowed concluding that the alternative scenario becomes economically convenient when the number of daily usages (N) is > 57 ± 4. The environmental convenience of the alternative scenario is visible even at N < 10. The method here described can be successfully used to support strategic decisions for cost optimization and environmental mitigation in institutional buildings.

2020 ◽  
Vol 12 (15) ◽  
pp. 6255 ◽  
Author(s):  
Eduardo Vázquez-López ◽  
Federico Garzia ◽  
Roberta Pernetti ◽  
Jaime Solís-Guzmán ◽  
Madelyn Marrero

Innovative designs, such as those taking place in nearly zero-energy buildings, need to tackle Life Cycle Cost, because reducing the impact of use can carry other collateral and unexpected costs. For example, it is interesting to include the evaluation of end-of-life costs by introducing future activities of selective dismantling and waste management, to also improve the environmental performance of the demotion project. For this purpose, it is necessary to develop methods that relate the process of selective demolition to the waste quantification and the costs derived from its management. In addition, a sensitivity analysis of end-of-life parameters allows different construction types, waste treatment options, and waste management costs to be compared. The assessment of end-of-life costs in the present work is developed by a case-based reasoning. Cost data are obtained from three actual studies which are part of the H2020 CRAVEzero project (Cost Reduction and Market Acceleration for Viable Nearly Zero-Energy Buildings). Results show that end-of-life costs are similar to traditional building typologies. The most influential materials are part of the substructure and structure of the building, such as concrete and steel products.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 624 ◽  
Author(s):  
Zeng Li ◽  
Jingying Fu ◽  
Gang Lin ◽  
Dong Jiang ◽  
Kun Liu ◽  
...  

In view of the complexity of the energy system and its complex relationship with socio-economic factors, this study adopts the Long-range Energy Alternative Planning (LEAP) model, a technology-based, bottom-up approach, scenario-based analysis, to develop a systematic analysis of the current and future energy consumption, supply and associated Green House Gas (GHG) emissions from 2015 to 2050. The impact of various energy policies on the energy system in Hebei Province was analysed by considering four scenarios: a Reference Scenario (REF), Industrial Structure Optimization Scenario (ISO), Terminal Consumption Structure Optimization Scenario (TOS) and Low-carbon Development Scenario (LCD). By designing strategic policies from the perspective of industrial adjustment, aggressive energy structure policies and measures, such as the ISO and the TOS, and even more aggressive options, such as the LCD, where the percentage of cleaner alternative energy sources has been further increased, it has been indicated that energy consumption will have increased from 321.618 million tonnes of coal equivalent (Mtce) in 2015 to 784.88 Mtce in 2050 in the REF, with a corresponding increase in GHG emissions from 920.56 million metric tonnes (Mt) to 2262.81 Mt. In contrast, the more aggressive policies and strategies involved in the LCD, which combines the ISO with the policy-oriented TOS, can lower energy consumption by 50.82% and CO2 emissions by 64.26%. The results shed light on whether and how these scenarios can shape the energy-carbon emission reduction trajectories and develop the low-carbon pathways in Hebei Province.


2016 ◽  
Vol 1 (13) ◽  
pp. 162-168
Author(s):  
Pippa Hales ◽  
Corinne Mossey-Gaston

Lung cancer is one of the most commonly diagnosed cancers across Northern America and Europe. Treatment options offered are dependent on the type of cancer, the location of the tumor, the staging, and the overall health of the person. When surgery for lung cancer is offered, difficulty swallowing is a potential complication that can have several influencing factors. Surgical interaction with the recurrent laryngeal nerve (RLN) can lead to unilateral vocal cord palsy, altering swallow function and safety. Understanding whether the RLN has been preserved, damaged, or sacrificed is integral to understanding the effect on the swallow and the subsequent treatment options available. There is also the risk of post-surgical reduction of physiological reserve, which can reduce the strength and function of the swallow in addition to any surgery specific complications. As lung cancer has a limited prognosis, the clinician must also factor in the palliative phase, as this can further increase the burden of an already compromised swallow. By understanding the surgery and the implications this may have for the swallow, there is the potential to reduce the impact of post-surgical complications and so improve quality of life (QOL) for people with lung cancer.


2020 ◽  
Author(s):  
Marie Eggeling ◽  
Anna Meinhardt ◽  
Ulrike Cress ◽  
Joachim Kimmerle ◽  
Martina Bientzle

Objective: This study examined the influence of physicians’ recommendations and gender on the decision-making process in a preference-sensitive situation. Methods: N = 201 participants were put in a hypothetical scenario in which they suffered from a rupture of the anterior cruciate ligament (ACL). They received general information on two equally successful treatment options for this injury (surgery vs. physiotherapy) and answered questions regarding their treatment preference, certainty and satisfaction regarding their decision, and attitude toward the treatment options. Then participants watched a video that differed regarding physician’s recommendation (surgery vs. physiotherapy) and physician’s gender (female vs. male voice and picture). Afterward, they indicated again their treatment preference, certainty, satisfaction, and attitude, as well as the physician’s professional and social competence.Results: Participants changed their treatment preferences in the direction of the physician’s recommendation (P&lt;.001). Decision certainty (P&lt;.001) and satisfaction (P&lt;.001) increased more strongly if the physician’s recommendation was congruent with the participant’s prior attitude than if the recommendation was contrary to the participant’s prior attitude. Finally, participants’ attitudes toward the recommended treatment became more positive (surgery recommendation: P&lt;.001; physiotherapy recommendation: P&lt;.001). We found no influence of the physician’s gender on participants’ decisions, attitudes, or competence assessments.Conclusion: This research indicates that physicians should be careful with recommendations when aiming for shared decisions, as they might influence patients even if the patients have been made aware that they should take their personal preferences into account. This could be particularly problematic if the recommendation is not in line with the patient’s preferences.


1988 ◽  
Vol 20 (11-12) ◽  
pp. 131-136 ◽  
Author(s):  
A. D. Wong ◽  
C. D. Goldsmith

The effect of discharging specific oil degrading bacteria from a chemostat to a refinery activated sludge process was determined biokinetically. Plant data for the kinetic evaluation of the waste treatment plant was collected before and during treatment. During treatment, the 500 gallon chemostatic growth chamber was operated on an eight hour hydraulic retention time, at a neutral pH, and was fed a mixture of refinery wastewater and simple sugars. The biokinetic constants k (days−1), Ks (mg/L), and K (L/mg-day) were determined before and after treatment by Monod and Lineweaver-Burk plots. Solids discharged and effluent organic concentrations were also evaluated against the mean cell retention time (MCRT). The maximum utilization rate, k, was found to increase from 0.47 to 0.95 days−1 during the operation of the chemostat. Subsequently, Ks increased from 141 to 556 mg/L. Effluent solids were shown to increase slightly with treatment. However, this was acceptable due to the polishing pond and the benefit of increased ability to accept shock loads of oily wastewater. The reason for the increased suspended solids in the effluent was most likely due to the continual addition of bacteria in exponential growth that were capable of responding to excess substrate. The effect of the chemostatic addition of specific microbial inocula to the refinery waste treatment plant has been to improve the overall organic removal capacity along with subsequent gains in plant stability.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 184
Author(s):  
Kalpana K. Bhanumathy ◽  
Amrutha Balagopal ◽  
Frederick S. Vizeacoumar ◽  
Franco J. Vizeacoumar ◽  
Andrew Freywald ◽  
...  

Protein kinases constitute a large group of enzymes catalysing protein phosphorylation and controlling multiple signalling events. The human protein kinase superfamily consists of 518 members and represents a complicated system with intricate internal and external interactions. Protein kinases are classified into two main families based on the ability to phosphorylate either tyrosine or serine and threonine residues. Among the 90 tyrosine kinase genes, 58 are receptor types classified into 20 groups and 32 are of the nonreceptor types distributed into 10 groups. Tyrosine kinases execute their biological functions by controlling a variety of cellular responses, such as cell division, metabolism, migration, cell–cell and cell matrix adhesion, cell survival and apoptosis. Over the last 30 years, a major focus of research has been directed towards cancer-associated tyrosine kinases owing to their critical contributions to the development and aggressiveness of human malignancies through the pathological effects on cell behaviour. Leukaemia represents a heterogeneous group of haematological malignancies, characterised by an uncontrolled proliferation of undifferentiated hematopoietic cells or leukaemia blasts, mostly derived from bone marrow. They are usually classified as chronic or acute, depending on the rates of their progression, as well as myeloid or lymphoblastic, according to the type of blood cells involved. Overall, these malignancies are relatively common amongst both children and adults. In malignant haematopoiesis, multiple tyrosine kinases of both receptor and nonreceptor types, including AXL receptor tyrosine kinase (AXL), Discoidin domain receptor 1 (DDR1), Vascular endothelial growth factor receptor (VEGFR), Fibroblast growth factor receptor (FGFR), Mesenchymal–epithelial transition factor (MET), proto-oncogene c-Src (SRC), Spleen tyrosine kinase (SYK) and pro-oncogenic Abelson tyrosine-protein kinase 1 (ABL1) mutants, are implicated in the pathogenesis and drug resistance of practically all types of leukaemia. The role of ABL1 kinase mutants and their therapeutic inhibitors have been extensively analysed in scientific literature, and therefore, in this review, we provide insights into the impact and mechanism of action of other tyrosine kinases involved in the development and progression of human leukaemia and discuss the currently available and emerging treatment options based on targeting these molecules.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 2
Author(s):  
Elisavet Koutsi ◽  
Sotirios Deligiannis ◽  
Georgia Athanasiadou ◽  
Dimitra Zarbouti ◽  
George Tsoulos

During the last few decades, electric vehicles (EVs) have emerged as a promising sustainable alternative to traditional fuel cars. The work presented here is carried out in the context of the Horizon 2020 project MERLON and targets the impact of EVs on electrical grid load profiles, while considering both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation modes. Three different charging policies are considered: the uncontrolled charging, which acts as a reference scenario, and two strategies that fall under the umbrella of individual charging policies based on price incentive strategies. Electricity prices along with the EV user preferences are taken into account for both charging (G2V) and discharging (V2G) operations, allowing for more realistic scenarios to be considered.


2021 ◽  
pp. 1-11
Author(s):  
Aysu Melis Buyuk ◽  
Gul T. Temur

In line with the increase in consciousness on sustainability in today’s global world, great emphasis has been attached to food waste management. Food waste is a complex issue to manage due to uncertainties on quality, quantity, location, and time of wastes, and it involves different decisions at many stages from seed to post-consumption. These ambiguities re-quire that some decisions should be handled in a linguistic and ambiguous environment. That forces researchers to benefit from fuzzy sets mostly utilized to deal with subjectivity that causes uncertainty. In this study, as a novel approach, the spherical fuzzy analytic hierarchy process (SFAHP) was used to select the best food treatment option. In the model, four main criteria (infrastructural, governmental, economic, and environmental) and their thirteen sub-criteria are considered. A real case is conducted to show how the proposed model can be used to assess four food waste treatment options (composting, anaerobic digestion, landfilling, and incineration). Also, a sensitivity analysis is generated to check whether the evaluations on the main criteria can change the results or not. The proposed model aims to create a subsidiary tool for decision makers in relevant companies and institutions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kaoru Tachiiri ◽  
Xuanming Su ◽  
Ken’ichi Matsumoto

AbstractFor the purpose of identifying the key processes and sectors involved in the interaction between Earth and socio-economic systems, we review existing studies on those processes/sectors through which the climate impacts socio-economic systems, which then in turn affect the climate. For each process/sector, we review the direct physical and ecological impacts and, if available, the impact on the economy and greenhouse gas (GHG) emissions. Based on this review, land sector is identified as the process with the most significant impact on GHG emissions, while labor productivity has the largest impact on the gross domestic product (GDP). On the other hand, the energy sector, due to the increase in the demand for cooling, will have increased GHG emissions. Water resources, sea level rise, natural disasters, ecosystem services, and diseases also show the potential to have a significant influence on GHG emissions and GDP, although for most of these, a large effect was reported only by a limited number of studies. As a result, more studies are required to verify their influence in terms of feedbacks to the climate. In addition, although the economic damage arising from migration and conflict is uncertain, they should be treated as potentially damaging processes.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 461
Author(s):  
Isabel Azevedo ◽  
Vítor Leal

This paper proposes the use of decomposition analysis to assess the effect of local energy-related actions towards climate change mitigation, and thus improve policy evaluation and planning at the local level. The assessment of the impact of local actions has been a challenge, even from a strictly technical perspective. This happens because the total change observed is the result of multiple factors influencing local energy-related greenhouse gas (GHG) emissions, many of them not even influenced by local authorities. A methodology was developed, based on a recently developed decomposition model, that disaggregates the total observed changes in the local energy system into multiple causes/effects (including local socio-economic evolution, technology evolution, higher-level governance frame and local actions). The proposed methodology, including the quantification of the specific effect associated with local actions, is demonstrated with the case study of the municipality of Malmö (Sweden) in the timeframe between 1990 and 2015.


Sign in / Sign up

Export Citation Format

Share Document