scholarly journals Explanation Within Arm’s Reach: A Predictive Processing Framework for Single Arm Use in Octopuses

Erkenntnis ◽  
2021 ◽  
Author(s):  
Sidney Carls-Diamante

AbstractOctopuses are highly intelligent animals with vertebrate-like cognitive and behavioural repertoires. Despite these similarities, vertebrate-based models of cognition and behaviour cannot always be successfully applied to octopuses, due to the structural and functional characteristics that have evolved in their nervous system in response to the unique challenges posed by octopus morphology. For instance, the octopus brain does not support a somatotopic or point-for-point spatial map of the body—an important feature of vertebrate nervous systems. Thus, while octopuses are capable of motor tasks whose vertebrate counterparts require detailed interoceptive monitoring, these movements may not be explainable using motor control frameworks premised on internal spatial representation. One such motor task is the extension of a single arm. The ability of octopuses to select and use a single arm without the guidance of a somatotopic map has been regarded as a motor control puzzle. In an attempt at a solution, this paper develops a predictive processing account of single-arm extension in octopuses.

Author(s):  
Rick Grush

This article outlines a unified information processing framework whose goal is to explain how the nervous system represents space, time, and objects. It explains the concept of the emulation theory of representation and describes an extension of the emulation framework for temporal representation. It discusses Alexandre Pouget's basis function model of spatial representation and describes how to combine the basis function model of spatial representation with the trajectory emulation model of temporal representation to yield an information processing framework that genuinely represents behavioral spatiotemporal trajectories of behavioral objects.


2021 ◽  
Vol 99 (2) ◽  
pp. 108-114
Author(s):  
A. V. Berg ◽  
G. O. Penina

The dominant position among the reasons of working-age population’s health deterioration belongs to diseases of the peripheral nervous system (PNS), the peak prevalence of which occurs at the age of 35–40. PNS diseases are diagnosed in about 76.0% of industrial workers, and account for more than half of all occupational diseases. They are the main cause of incapacitation and long-term disability. Publications on disability due to PNS diseases are isolated.The aim of the work. Clinical and functional characteristics of PNS disorders that cause disability in the working-age population.Material and methods. Among 91 496 first recognized as disabled in the Republic of Bashkortostan in 2014–2018, all disabled people of working age were selected due to PNS diseases, in which the main independent diagnosis was radiculopathy, polyneuropathy, neuropathy and vibratory disease with indication to lumbar-sacral radiculopathy with polyneuropathy of the upper extremities. 107 people were identified to constitute a closed cohort for a comprehensive study of the clinical-functional state and patterns of disability formation in them. The clinical-functional characteristic is given on the basis of the results of studies set forth in the directional medical documents and the assessment by an expert neurologist of the Main Bureau of Medical and Social Expertise. Statistical analysis was performed in Microsoft Excel.Results. The prevalence of PNS diseases has been found to be increasing. Three of the newly diagnosed neurological patients have been the carriers of PNS disease. PNS diseases are formed and reach peak in working age. Characterized by a chronic, progressive course, they often cause temporary and persistent disability. On average, there are 0.1 ± 0.028 persons with disabilities per 10 thousand of the able-bodied population due to PNS diseases, the level of which in dynamics for 2014–2018 increased by 1.7 times. Persons with disabilities (69.0%) are mainly represented by men, every second (50.6%) is over 50 years old, with an average age of 48.7 ± 5.7 years. The clinical-functional state is characterized by constant pain, numbness, seizures, restriction of movements in the limbs, sensory disorders, vegetative-vascular disorders.Conclusion. The quantitative evaluation of the main types of the body functions and main categories of vital activity persistent disorders made it possible to detect that 69.3 ± 4.4% persons with disabilities have persistent moderate abnormalities of functions in the range 40–60% (II degree), another 24.4 ± 3.8 — persistent pronounced abnormalities in the range 70–80% (III degree) and 6.3 ± 6.0% — persistent significant abnormalities in the range 90–100% (IV degree). The severity of impaired functioning of the body is the basis for the level of persistent disability determination.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Elena Beretta ◽  
Ambra Cesareo ◽  
Emilia Biffi ◽  
Carolyn Schafer ◽  
Sara Galbiati ◽  
...  

Acquired brain injuries (ABIs) can lead to a wide range of impairments, including weakness or paralysis on one side of the body known as hemiplegia. In hemiplegic patients, the rehabilitation of the upper limb skills is crucial, because the recovery has an immediate impact on patient quality of life. For this reason, several treatments were developed to flank physical therapy (PT) and improve functional recovery of the upper limbs. Among them, Constraint-Induced Movement Therapy (CIMT) and robot-aided therapy have shown interesting potentialities in the rehabilitation of the hemiplegic upper limb. Nevertheless, there is a lack of quantitative evaluations of effectiveness in a standard clinical setting, especially in children, as well as a lack of direct comparative studies between these therapeutic techniques. In this study, a group of 18 children and adolescents with hemiplegia was enrolled and underwent intensive rehabilitation treatment including PT and CIMT or Armeo®Spring therapy. The effects of the treatments were assessed using clinical functional scales and upper limb kinematic analysis during horizontal and vertical motor tasks. Results showed CIMT to be the most effective in terms of improved functional scales, while PT seemed to be the most significant in terms of kinematic variations. Specifically, PT resulted to have positive influence on distal movements while CIMT conveyed more changes in the proximal kinematics. Armeo treatment delivered improvements mainly in the vertical motor task, showing trends of progresses of the movement efficiency and reduction of compensatory movements of the shoulder with respect to other treatments. Therefore, every treatment gave advantages in a specific and different upper limb district. Therefore, results of this preliminary study may be of help to define the best rehabilitation treatment for each patient, depending on the goal, and may thus support clinical decision.


2020 ◽  
Vol 10 (3) ◽  
pp. 76
Author(s):  
Jihye Ryu ◽  
Elizabeth Torres

While attempting to bridge motor control and cognitive science, the nascent field of embodied cognition has primarily addressed intended, goal-oriented actions. Less explored, however, have been unintended motions. Such movements tend to occur largely beneath awareness, while contributing to the spontaneous control of redundant degrees of freedom across the body in motion. We posit that the consequences of such unintended actions implicitly contribute to our autonomous sense of action ownership and agency. We question whether biorhythmic activities from these motions are separable from those which intentionally occur. Here we find that fluctuations in the biorhythmic activities of the nervous systems can unambiguously differentiate across levels of intent. More important yet, this differentiation is remarkable when we examine the fluctuations in biorhythmic activity from the autonomic nervous systems. We find that when the action is intended, the heart signal leads the body kinematics signals; but when the action segment spontaneously occurs without instructions, the heart signal lags the bodily kinematics signals. We conclude that the autonomic nervous system can differentiate levels of intent. Our results are discussed while considering their potential translational value.


2020 ◽  
Author(s):  
Jihye Ryu ◽  
Elizabeth Torres

AbstractWhile attempting to bridge motor control and cognitive science, the nascent field of embodied cognition has primarily addressed intended, goal-oriented actions. Less explored however, have been unintended motions. Such movements tend to occur largely beneath awareness, while contributing to the spontaneous control of redundant degrees of freedom across the body in motion. We posit that the consequences of such unintended actions implicitly contribute to our autonomous sense of action ownership and agency. We question whether biorhythmic activities from these motions are separable from those which intentionally occur. Here we find that fluctuations in the biorhythmic activities of the nervous systems can unambiguously differentiate across levels of intent. More important yet, this differentiation is remarkable when we examine the fluctuations in biorhythmic activity from the autonomic nervous systems. We find that when the action is intended, the heart signal leads the body kinematics signals; but when the action segment spontaneously occurs without instructions, the heart signal lags the bodily kinematics signals. We posit that such differentiation within the nervous system, may be necessary to acquire the sense of action ownership, which in turn, contributes to the sense of agency. We discuss our results while considering their potential translational value.


Author(s):  
Wiktor Djaczenko ◽  
Carmen Calenda Cimmino

The simplicity of the developing nervous system of oligochaetes makes of it an excellent model for the study of the relationships between glia and neurons. In the present communication we describe the relationships between glia and neurons in the early periods of post-embryonic development in some species of oligochaetes.Tubifex tubifex (Mull. ) and Octolasium complanatum (Dugès) specimens starting from 0. 3 mm of body length were collected from laboratory cultures divided into three groups each group fixed separately by one of the following methods: (a) 4% glutaraldehyde and 1% acrolein fixation followed by osmium tetroxide, (b) TAPO technique, (c) ruthenium red method.Our observations concern the early period of the postembryonic development of the nervous system in oligochaetes. During this period neurons occupy fixed positions in the body the only observable change being the increase in volume of their perikaryons. Perikaryons of glial cells were located at some distance from neurons. Long cytoplasmic processes of glial cells tended to approach the neurons. The superimposed contours of glial cell processes designed from electron micrographs, taken at the same magnification, typical for five successive growth stages of the nervous system of Octolasium complanatum are shown in Fig. 1. Neuron is designed symbolically to facilitate the understanding of the kinetics of the growth process.


Author(s):  
F. L. Azizova ◽  
U. A. Boltaboev

The features of production factors established at the main workplaces of shoe production are considered. The materials on the results of the study of the functional state of the central nervous system of women workers of shoe production in the dynamics of the working day are presented. The level of functional state of the central nervous system was determined by the speed of visual and auditory-motor reactions, installed using the universal device chronoreflexometer. It was revealed that in the body of workers of shoe production there is an early development of inhibitory processes in the central nervous system, which is expressed in an increase in the number of errors when performing tasks on proofreading tables. It was found that the most pronounced shift s in auditory-motor responses were observed in professional groups, where higher levels of noise were registered in the workplace. The correlation analysis showed a close direct relationship between the growth of mistakes made in the market and the decrease in production. An increase in the time spent on the task indicates the occurrence and growth of production fatigue.Funding. The study had no funding.Conflict of interests. The authors declare no conflict of interests.


Author(s):  
Natalya L. Yakimova ◽  
Vladimir A. Pankov ◽  
Aleksandr V. Lizarev ◽  
Viktor S. Rukavishnikov ◽  
Marina V. Kuleshova ◽  
...  

Introduction. Vibration disease continues to occupy one of the leading places in the structure of professional pathology. In workers after the termination of contact with vibration generalization and progression of violations in an organism is noted. The pathogenetic mechanisms of the progredient course of disturbances in the nervous system in the post-contact period of vibration exposure remain insufficiently studied.The aim of the study was to test an experimental model of vibration exposure to assess the neurophysiological and morphological effects of vibration in rats in the dynamics of the post-contact period.Materials and methods. The work was performed on 168 white male outbred rats aged 3 months weighing 180–260 g. The vibration effect was carried out on a 40 Hz vibrating table for 60 days 5 times a week for 4 hours a day. Examination of animals was performed after the end of the physical factor, on the 30th, 60th and 120th day of the post-contact period. To assess the long-term neurophysiological and morphofunctional effects of vibration in rats, we used indicators of behavioral reactions, bioelectric activity of the somatosensory zone of the cerebral cortex, somatosensory and visual evoked potentials, parameters of muscle response, morphological parameters of nervous tissue.Results. In the dynamics of the post-contact period observed the preservation of violations of tentatively research, motor and emotional components of behavior. In the Central nervous system instability of activity of rhythms of an electroencephalogram, decrease in amplitude of visual evoked potentials, lengthening of latency of somatosensory evoked potentials, decrease in total number of normal neurons and astroglia is established. In the peripheral nervous system remained changes in indicators: increasing duration and latency, reducing the amplitude of the neuromuscular response.Conclusions: The experimental model allows us to study the long-term neurophysiological and morphological effects of vibration on the body. The formation and preservation of changes in behavioral activity, neurophysiological and morphological effects of vibration from the 30th to the 120th day of the post-contact period were confirmed.


2018 ◽  
Author(s):  
Pedro Silva Moreira ◽  
Pedro Chaves ◽  
Nuno Dias ◽  
Patrício Costa ◽  
Pedro Rocha Almeida

Background: The search for autonomic correlates of emotional processing has been a matter of interest for the scientific community with the goal of identifying the physiological basis of emotion. Despite an extensive state-of-the-art exploring the correlates of emotion, there is no absolute consensus regarding how the body processes an affective state.Objectives: In this work, we aimed to aggregate the literature of psychophysiological studies in the context of emotional induction. Methods: For this purpose, we conducted a systematic review of the literature and a meta-analytic investigation, comparing different measures from the electrodermal, cardiovascular, respiratory and facial systems across emotional categories/dimensions. Two-hundred and ninety-one studies met the inclusion criteria and were quantitatively pooled in random-effects meta-analytic modelling. Results: Heart rate and skin conductance level were the most reported psychophysiological measures. Overall, there was a negligible differentiation between emotional categories with respect to the pooled estimates. Of note, considerable amount of between-studies’ heterogeneity was found in the meta-analytic aggregation. Self-reported ratings of emotional arousal were found to be associated with specific autonomic-nervous system (ANS) indices, particularly with the variation of the skin conductance level. Conclusions: Despite this clear association, there is still a considerable amount of unexplained variability that raises the need for more fine-grained analysis to be implemented in future research in this field.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


Sign in / Sign up

Export Citation Format

Share Document