New source of black rot disease resistance in Brassica oleracea and genetic analysis of resistance

Euphytica ◽  
2015 ◽  
Vol 207 (1) ◽  
pp. 35-48 ◽  
Author(s):  
Partha Saha ◽  
Pritam Kalia ◽  
Munish Sharma ◽  
Dinesh Singh
2021 ◽  
Vol 12 ◽  
Author(s):  
Ranjan K. Shaw ◽  
Yusen Shen ◽  
Jiansheng Wang ◽  
Xiaoguang Sheng ◽  
Zhenqing Zhao ◽  
...  

Brassica oleracea is one of the most important species of the Brassicaceae family encompassing several economically important vegetables produced and consumed worldwide. But its sustainability is challenged by a range of pathogens, among which black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the most serious and destructive seed borne bacterial disease, causing huge yield losses. Host-plant resistance could act as the most effective and efficient solution to curb black rot disease for sustainable production of B. oleracea. Recently, ‘omics’ technologies have emerged as promising tools to understand the host-pathogen interactions, thereby gaining a deeper insight into the resistance mechanisms. In this review, we have summarized the recent achievements made in the emerging omics technologies to tackle the black rot challenge in B. oleracea. With an integrated approach of the omics technologies such as genomics, proteomics, transcriptomics, and metabolomics, it would allow better understanding of the complex molecular mechanisms underlying black rot resistance. Due to the availability of sequencing data, genomics and transcriptomics have progressed as expected for black rot resistance, however, other omics approaches like proteomics and metabolomics are lagging behind, necessitating a holistic and targeted approach to address the complex questions of Xcc-Brassica interactions. Genomic studies revealed that the black rot resistance is a complex trait and is mostly controlled by quantitative trait locus (QTL) with minor effects. Transcriptomic analysis divulged the genes related to photosynthesis, glucosinolate biosynthesis and catabolism, phenylpropanoid biosynthesis pathway, ROS scavenging, calcium signalling, hormonal synthesis and signalling pathway are being differentially expressed upon Xcc infection. Comparative proteomic analysis in relation to susceptible and/or resistance interactions with Xcc identified the involvement of proteins related to photosynthesis, protein biosynthesis, processing and degradation, energy metabolism, innate immunity, redox homeostasis, and defence response and signalling pathways in Xcc–Brassica interaction. Specifically, most of the studies focused on the regulation of the photosynthesis-related proteins as a resistance response in both early and later stages of infection. Metabolomic studies suggested that glucosinolates (GSLs), especially aliphatic and indolic GSLs, its subsequent hydrolysis products, and defensive metabolites synthesized by jasmonic acid (JA)-mediated phenylpropanoid biosynthesis pathway are involved in disease resistance mechanisms against Xcc in Brassica species. Multi-omics analysis showed that JA signalling pathway is regulating resistance against hemibiotrophic pathogen like Xcc. So, the bonhomie between omics technologies and plant breeding is going to trigger major breakthroughs in the field of crop improvement by developing superior cultivars with broad-spectrum resistance. If multi-omics tools are implemented at the right scale, we may be able to achieve the maximum benefits from the minimum. In this review, we have also discussed the challenges, future prospects, and the way forward in the application of omics technologies to accelerate the breeding of B. oleracea for disease resistance. A deeper insight about the current knowledge on omics can offer promising results in the breeding of high-quality disease-resistant crops.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2705
Author(s):  
Lu Lu ◽  
Sokrat G. Monakhos ◽  
Yong Pyo Lim ◽  
So Young Yi

Black rot disease, caused by Xanthomonas campestris pv. campestris (Xcc), results in significant yield losses in Brassica oleracea crops worldwide. To find black rot disease-resistant cabbage lines, we carried out pathogenicity assays using the scissor-clipping method in 94 different B. oleracea lines. By comparing the lesion areas, we selected a relatively resistant line, Black rot Resistance 155 (BR155), and a highly susceptible line, SC31. We compared the two cabbage lines for the Xcc-induced expression pattern of 13 defense-related genes. Among them, the Xcc-induced expression level of PR1 and antioxidant-related genes (SOD, POD, APX, Trx H, and CHI) were more than two times higher in BR155 than SC31. Nitroblue tetrazolium (NBT) and diaminobenzidine tetrahydrochloride (DAB) staining analysis showed that BR155 accumulated less Xcc-induced reactive oxygen species (ROS) than did SC31. In addition, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays showed that BR155 had higher antioxidant activity than SC31. This study, focused on the defense responses of cabbage during the early biotrophic stage of infection, indicated that Xcc-induced ROS might play a role in black rot disease development. We suggest that non-enzymatic antioxidants are important, particularly in the early defense mechanisms of cabbage against Xcc.


2018 ◽  
Vol 104 ◽  
pp. 9-14 ◽  
Author(s):  
Daiane Gonzaga Ribeiro ◽  
Gabriela Corassa Rodrigues da Cunha ◽  
Cristiane dos Santos ◽  
Luciano Paulino Silva ◽  
Osmundo Brilhante de Oliveira Neto ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 569
Author(s):  
Carmen Vega-Álvarez ◽  
Marta Francisco ◽  
Pilar Soengas

Black rot disease, caused by the bacterium Xanthomonas campestris pv. campestris (Pammel) Dowson (Xcc), causes important yield losses in Brassica oleracea L. crops worldwide. In temperate areas, yield losses are mostly due to the discarding of those plants showing chlorotic and necrotic lesions, since they may be unmarketable. However, the biomass loss caused by the diversion of resources from the primary to the secondary defense metabolism could also affect the final crop yield. In this work, we have focused on studying the impact of Xcc race 1 invasion on the biomass production of young and adult B. oleracea plants. The results have shown that Xcc infection reduces biomass and photosynthesis in the aerial parts of seedlings and modifies their water percentage in a time-dependent manner. When adult plants were inoculated in the field, no effect was detected on the leaves or the biomass of marketable products. This was probably due to a better immune response when compared to seedlings. Since the first developmental stages of B. oleracea crops are especially vulnerable to Xcc, plant disease control should be increased in order to avoid yield losses of marketable products at the adult stage.


2006 ◽  
Vol 28 (5) ◽  
pp. 347-350 ◽  
Author(s):  
V. R. Vijayanandraj ◽  
D. Nagendra Prasad ◽  
N. Mohan ◽  
M. Gunasekaran
Keyword(s):  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Farid Abd-El-Kareem ◽  
Ibrahim E. Elshahawy ◽  
Mahfouz M. M. Abd-Elgawad

Abstract Background Black root rot of strawberry plants caused by Rhizoctonia solani, Fusarium solani, and Pythium sp. is a serious disease in Egypt. Biocontrol agents have frequently proved to possess paramount and safe tools against many diseases. The impact of soil treatments with 3 Bacillus pumilus isolates on black root rot disease of strawberry plants caused by R. solani, F., and Pythium sp. under laboratory and field conditions was examined herein on the commonly used ‘Festival’ strawberry cultivar. To increase the bacterial adhesion and distribution on the roots, each seedling was dipped in bacterial cell suspension at 1 × 108 colony-forming units/ml of each separate bacterial isolate for 30 min then mixed with 5% Arabic gum. Results The tested B. pumilus isolates significantly reduced the growth area of these 3 fungi. The two bacterial isolates Nos. 2 and 3 reduced the growth area by more than 85.2, 83.6, and 89.0% for R. solani, F. solani, and Pythium sp., respectively. Likewise, the 3 bacterial isolates significantly (P ≤ 0.05) inhibited the disease under field conditions. Isolates Nos. 2 and 3 suppressed the disease incidence by 64.4 and 68.9% and disease severity by 65.3 and 67.3%, respectively. The fungicide Actamyl had effect similar to that of the 2 isolates. B. pumilus isolates significantly enhanced growth parameters and yields of strawberry plants; isolates Nos. 2 and 3 raised the yield by 66.7 and 73.3%, respectively. Conclusions Bacillus pumilus isolates could effectively manage the black rot disease in strawberry herein. Due to the significant impact of the root rot disease on strawberry yield, B. pumilus should be further tested to manage the disease on strawberry on large scale in Egypt.


Sign in / Sign up

Export Citation Format

Share Document