Testing Impact Load Cell Calculations of Material Fracture Toughness and Strength Using 3D-Printed Sandstone

2019 ◽  
Vol 38 (2) ◽  
pp. 1065-1096
Author(s):  
Karina Barbosa ◽  
Rick Chalaturnyk ◽  
Benjamin Bonfils ◽  
Joan Esterle ◽  
Zhongwei Chen
2018 ◽  
Vol 8 (10) ◽  
pp. 1879 ◽  
Author(s):  
Luis Santos ◽  
Joel de Jesus ◽  
José Ferreira ◽  
José Costa ◽  
Carlos Capela

Selective Laser Melting (SLM) is currently one of the more advanced manufacturing and prototyping processes, allowing the 3D-printing of complex parts through the layer-by-layer deposition of powder materials melted by laser. This work concerns the study of the fracture toughness of maraging AISI 18Ni300 steel implants by SLM built over two different conventional steels, AISI H13 and AISI 420, ranging the scan rate between 200 mm/s and 400 mm/s. The SLM process creates an interface zone between the conventional steel and the laser melted implant in the final form of compact tension (CT) samples, where the hardness is higher than the 3D-printed material but lower than the conventional steel. Both fully 3D-printed series and 3D-printed implants series produced at 200 mm/s of scan rate showed higher fracture toughness than the other series built at 400 mm/s of scan rate due to a lower level of internal defects. An inexpressive variation of fracture toughness was observed between the implanted series with the same parameters. The crack growth path for all samples occurred in the limit of interface/3D-printed material zone and occurred between laser melted layers.


2018 ◽  
Vol 65 (5) ◽  
pp. 412-419 ◽  
Author(s):  
Claudia R. Cutler ◽  
Anita L. Hamilton ◽  
Emma Hough ◽  
Cheyenne M. Baines ◽  
Ross A. Clark

2013 ◽  
Vol 634-638 ◽  
pp. 2808-2812
Author(s):  
Zhu Feng Sun ◽  
Ling Yun Xie

Explored the influence of pore structure of foam metal material on mechanical behavior of fracture. Discuss fracture toughness of several different micro geometric structure of foam metal material with finite element method. The author's calculations showed, microstructure and loading mode has an important effect on the fracture toughness of the foam metal material. due to ignoring the effects of cell structure on the mechanical properties of materials, the classic fracture toughness criterion -crack tip opening displacement (COD) is incomplete, it would be more efficient to take opening displacement change rate of the crack-tip as the parameter to characteristic the metallic foam material fracture toughness.


Author(s):  
T. Turkalj ◽  
S. Cravero ◽  
M. Valdez ◽  
F. Arroyo ◽  
Ph. Darcis

Abstract Large diameter Sour Service Pipelines are designed for the safe and efficient transportation of production fluids containing H2S. This service condition exposes the pipe to hydrogen embrittlement mechanisms and demands a material with high Sulfide Stress Cracking (SSC) resistance, and thus, a high fracture toughness in a representative sour environment. Engineering Critical Assessment (ECA) procedures are usually employed to determine the suitability of a pipeline design, These procedures require the correct determination of the material fracture mechanical properties. Although Method D of NACE TM0177_16 [1] using DCB specimens is the currently recognized testing methodology to evaluate SSC pipe performance, other type of tests could be employed for the purpose of an ECA. In the present paper, a fracture mechanics experimental program in sour environment is presented. Parent Pipe and Weld Material of Longitudinal Submerged Arc Welded (LSAW) large diameter pipes in H2S were studied. Fracture Toughness Parameters, such K-limit from standard DCB tests and K-threshold from Single Edge Notch Tension (SENT) specimens under constant loading, are compared and discussed. Furthermore, the fracture toughness values obtained from SENT specimens in sour environment are used to estimate the burst pressure using an ECA procedure.


2019 ◽  
Vol 795 ◽  
pp. 165-171
Author(s):  
Wu Lin Wang ◽  
Du Wei Wang ◽  
Kai Shu Guan

Fracture toughness empirical correlation between SPT(Small Punch Test) with non-crack sample and standard fracture toughness test has been established in recent years. In order to compensate the imperfection of empirical correlation, such as absence theoretical basis, poor repeatability and universality, in this paper, an O-type pre-cracked sample was adopted to evaluate fracture toughness. The mechanical model of the sample is in compliance with plane strain condition in the direction of crack propagation. In this paper a determination procedure was studied and established, and the J-integral of steel Q345R was calculated using the procedure.


2010 ◽  
Vol 446 ◽  
pp. 11-21
Author(s):  
Viorel Goanta ◽  
Marian Mares

In order to determine the fracture toughness of the materials presenting high hardness values in the superficial layers, the Vickers micro-indentation was imposed as a reliable procedure. That method became attractive because of the relative simplicity of the experimental technique and because of its low cost. There are several calculus relationships that could be applied using the data provided by that method, in order to determine the material fracture toughness. The determination of fracture toughness using the Vickers indentation method is based on the analysis of radial cracks propagation, from the corners of the indentation trace. The length of these cracks is connected with the material fracture toughness, on the basis of some semi-empirical calculus relations that are taking into account the indentation load and some physical characteristics of the test material, as Young’s modulus and Poisson’s coefficient. In the present paper, fracture toughness was determined on a series of ceramic samples, made of the same material, but with different geometrical shapes and obtained by applying different technological procedures. The influence of some technological parameters on the fracture toughness was evaluated. The material fracture toughness was determined, into the vicinity of the propagated cracks (in a sample that could be a final product), on an area with a specified geometric contour. As a preliminary stage, a step by step FEM analysis was made, into the Vickers indentation material region, for different values of indentation load. In this manner, it was proved that the maximum stress value, on the perpendicular direction, as related to the crack diagonal plane, is always located at the peak of the indentation trace, and that is the effective start-point of cracking, for this type of indentation.


Author(s):  
Marius Gintalas ◽  
Robert A. Ainsworth

The paper presents T-stress solutions developed to characterize constraint levels in large-scale cracked pipes and elbows. Stress intensity factor, KI, solutions for pipes and elbows are normalised by material fracture toughness to define the Kr parameter in fitness-for-service procedures, such as R6. Adding knowledge on levels of T-stress allows more advanced analysis through a normalised constraint parameter βT. The paper presents analyses for 6 pipes and 8 elbows. Values of the normalised constraint parameter βT are calculated for each pipe and elbow at the experimentally measured crack initiation point. Comparison of constraint levels in the pipes and elbows with those in various types of fracture toughness specimen are used to predict the initiation loads using the R6 method and to provide guidelines for transferability.


Sign in / Sign up

Export Citation Format

Share Document