Ground Vibration Test and Dynamic Response of Horseshoe-shaped Pipeline During Tunnel Blasting Excavation in Pebbly Sandy Soil

2020 ◽  
Vol 38 (4) ◽  
pp. 3725-3736 ◽  
Author(s):  
Xiaoming Guan ◽  
Xuchun Wang ◽  
Zhen Zhu ◽  
Liang Zhang ◽  
Hongxian Fu
Author(s):  
chen huang ◽  
youyi zhang ◽  
Jun Zhao

In order to study the dynamic response of adjacent buildings in the process of tunnel blasting excavation, taking Yangjia tunnel blasting through a five-story frame structure residential building as an example, the propagation law of blasting seismic wave was analyzed by using HHT method through on-site blasting monitoring. Then, the ALE algorithm in ANSYS/LS-DYNA software was used to establish a three-dimensional numerical model based on the surrounding rock-cutting section-structure coupling to study the dynamic response of adjacent buildings under the blasting vibration of tunnel. The results show that the HHT analysis method can clearly describe the energy distribution of vibration signals in the time and frequency domain. The energy carried by the blasting vibration signal is corresponding to the detonating section, and the maximum energy appears in the cutting section, which further verifying that the vibration effect caused by the cutting hole blasting is the strongest. In the process of tunnel blasting, the dynamic responses of beams, columns and exterior walls of adjacent buildings are not consistent and show different variation rules along the height direction. In addition, the stress centralization mainly occurs in the exterior wall of the building, the joint of the exterior wall and the column, the joint of the exterior wall and the beam, and the joint of the exterior wall and the floor and other non-weight bearing area, indicating that these parts are more likely to damage and crack in the process of tunnel blasting.


2019 ◽  
Vol 91 (3) ◽  
pp. 466-476
Author(s):  
Wojciech Chajec

PurposeA low-cost but credible method of low-subsonic flutter analysis based on ground vibration test (GVT) results is presented. The purpose of this paper is a comparison of two methods of immediate flutter problem solution: JG2 – low cost software based on the strip theory in aerodynamics (STA) and V-g method of the flutter problem solution and ZAERO I commercial software with doublet lattice method (DLM) aerodynamic model and G method of the flutter problem solution. In both cases, the same sets of measured normal modes are used. Design/methodology/approachBefore flutter computation, resonant modes are supplied by some non-measurable but existing modes and processed using the author’s own procedure. For flutter computation, the modes are normalized using the aircraft mass model. The measured mode orthogonalization is possible. The flutter calculation made by means of both methods are performed for the MP-02 Czajka UL aircraft and the Virus SW 121 aircraft of LSA category. FindingsIn most cases, both compared flutter computation results are similar, especially in the case of high aspect wing flutter. The Czajka T-tail flutter analysis using JG2 software is more conservative than the one made by ZAERO, especially in the case of rudder flutter. The differences can be reduced if the proposed rudder effectiveness coefficients are introduced. Practical implicationsThe low-cost methods are attractive for flutter analysis of UL and light aircraft. The paper presents the scope of the low-cost JG2 method and its limitations. Originality/valueIn comparison with other works, the measured generalized masses are not used. Additionally, the rudder effectiveness reduction was implemented into the STA. However, Niedbal (1997) introduced corrections of control surface hinge moments, but the present work contains results in comparison with the outcome obtained by means of the more credible software.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Baofu Duan ◽  
Weizeng Gong ◽  
Guoshan Ta ◽  
Xuxu Yang ◽  
Xuewei Zhang

The vibration effect generated during tunnel excavation can influence or damage adjacent tunnels. Studying and controlling the blasting vibration effect has important theoretical and practical significance, especially for new tunnels. This paper takes the tunnel project of Gao Jiu Lu-Jia Hua Cross Tunnel in Chongqing as the research background and assesses the blasting vibration influence in the up-down cross-tunnel. Onsite monitoring and numerical simulation were used to analyze peak particle velocity (PPV) changes, stress distribution, and crown settlement during the excavation process of Gao Jiu Lu I Tunnel at Jia Hua Tunnel Left Line in the cross-section. Influence laws of blasting excavation in a small, clear distance cross-tunnel on an existing tunnel below were obtained. Results show that new tunnel blasting vibrations exerted the largest influence on the crown of the existing tunnel below in the cross-section. The maximum tensile stress of the secondary lining of the existing tunnel below was mainly concentrated in the crown area. The maximum compressive stress during excavation was concentrated in the crown foot, and the stress value was less than the tensile and compressive strength of the concrete. The loosening of the surrounding rock from blasting excavation of the new tunnel caused secondary settlement of the existing tunnel crown below. The cumulative settlement value at the cross-section of the two tunnels was the largest. With an increase in axial distance from the cross-section of the existing tunnel crown, the settlement value gradually declined and became stable. These research results have reference value for the construction of a small, clear distance cross-tunnel and provide theoretical guidance for similar tunnel excavation projects in the future.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Fei Xue ◽  
Caichu Xia ◽  
Guoliang Li ◽  
Baocheng Jin ◽  
Yongwang He ◽  
...  

The effects of tunnel blast excavation on the lining structures of adjacent tunnels are comprehensively studied for the Xinling highway tunnel project. First, the LS-DYNA software is applied to obtain the characteristics of vibration velocities and dynamic stresses at different positions of the tunnel liner. The results indicate that the maximum peak particle velocity (PPV) is located on the haunch of the lining facing the blasting source and that the PPV and peak tensile stress decrease with the increase in the surrounding rock grade. Second, a site test on blasting vibration is conducted to verify the simulation results. By using regression analysis of the measured vibration data, the calculation method of maximum charge per delay for optimizing blasting excavation under different surrounding rock grades is obtained. Finally, based on the statistical relationship between crack alteration and PPV on the lining before and after blasting, the safety thresholds of PPV for different portions of the tunnel are determined. The recommended safety threshold of PPV is 10 cm/s for intact lining and for B-grade and V-grade linings of the surrounding rock tunnel. However, if the lining crack grade falls between 1A and B, then the recommended safety thresholds of PPV for the III-grade and IV-grade surrounding rock tunnel are 5 cm/s and 6 cm/s, respectively. The threshold PPV proposed in this study has been successfully applied to restrict blast-induced damage during new tunnel excavation of the Xinling tunnel project.


2014 ◽  
Vol 580-583 ◽  
pp. 1212-1217
Author(s):  
Qi Song ◽  
Jia Qi Guo ◽  
Wen Hua Chen ◽  
Ping Guo

Zhengyangmen gate tower is a national emphasis cultural relic unit along the north-south axis of Beijing, which is above the Beijing metro line 2. Based on dynamic analysis model of gate tower and the position of gate tower and subway, the dynamic response characteristics of gate tower induced by Beijing metro line 2 are calculated, and compared with the in-site vibration test data.


2012 ◽  
Vol 446-449 ◽  
pp. 2462-2465 ◽  
Author(s):  
Hong De Wang ◽  
Xiu Feng Shen

Abstract. Through the analysis and research on the vibration effect caused by the urban New Austrian (shallow embedded) metro tunnel blasting construction, the main harming effect of the blasting vibration on the surface buildings is summarized. According to the actual condition on the site of blasting construction in No.2 line of Dalian metro tunnel, the reasonable vibration monitoring plan for blasting vibration wave is established. At the same time, by means of the regression analysis about the monitoring results of blasting vibration, the vibration wave’s regression formula are set up, which can expression the correlation among the vibration velocity, the charge weight, the distance between the blasting fountains and the buildings. The results show that the Sadaovsk formula can be use to describe the effect of the metro tunnel blasting construction on the surface buildings accurately and reasonably in this construction segment. This kind of regression analysis method can be use to direct subsequent blasting excavation.


Sign in / Sign up

Export Citation Format

Share Document