Study on Monitoring Technology of Surrounding Rock in Deep Layered Roadway Based on Constant Resistance and Large Deformation Bolt

Author(s):  
Dinggui Hou ◽  
Xinyu Zheng ◽  
Xu Fu
2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Xiaoming Sun ◽  
Bo Zhang ◽  
Li Gan ◽  
Zhigang Tao ◽  
Chengwei Zhao

Muzhailing Highway Extra-long Tunnel in Lanzhou, Gansu Province, China, belongs to the soft rock tunnel in the extremely high geostress area. During the construction process, large deformation of the soft rock occurred frequently. Taking the no. 2 inclined shaft of Muzhailing tunnel as the research object, an NPR (negative Poisson’s ratio) constant resistance and large deformation anchor cable support system based on high prestress force, constant resistance, and releasing surrounding rock pressure was proposed. The characteristics of the surrounding rock under the steel arch support and NPR anchor cable support were compared and analyzed by using 3DEC software. A series of field tests were conducted in the no. 2 inclined shaft, and the rock strength, displacement of the surrounding rock, deep displacement of the surrounding rock, internal force of steel arch, and axial force of anchor cable were measured to study the application effect of the NPR anchor cable support system in tunnel engineering. Moreover, the 3DEC numerical simulation results were compared with the field test results. The research results show that the application of NPR constant resistance and large deformation anchor cable support system in tunnel engineering has achieved good results, and it plays a significant role in controlling the large deformation of the tunnel surrounding rock.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jinyan Fan ◽  
Zhibiao Guo ◽  
Xiaobing Qiao ◽  
Zhigang Tao ◽  
Fengnian Wang ◽  
...  

During the excavation of the Minxian tunnel, problems of large deformations of surrounding rocks and failure of support structures appeared frequently, which caused serious influences on construction safety and costs of the tunnel. Based on laboratory analysis of mineral composition and field investigations on deformation characteristics of the surrounding rocks, the large deformation mechanism of surrounding rocks of the tunnel was considered as water-absorbing swelling molecules of carbonaceous slate and stress-induced asymmetric structural deformations of the surrounding rocks. The structural deformations of surrounding rocks mainly include bending deformation, interlayer sliding, and crushing failure of local rock blocks. Then, a new constant resistance and yielding support technology based on the constant resistance and large deformation (CRLD) anchor cable was proposed to control large deformations of surrounding rocks. The field tests and deformation monitoring were carried out. The monitoring results showed that compared with original support measure, the surrounding rock deformations, stresses of primary supports, and permanent lining using new support technology decreased greatly. Among them, the maximum deformation of surrounding rock was only 73 mm. The effects of field application and results of deformation monitoring showed that the new support technology can effectively control large deformations of the surrounding rocks in the Minxian tunnel.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yong Zhang ◽  
Chengwei Zhao ◽  
Ming Jiang ◽  
Jiaxuan Zhang ◽  
Chen Chen ◽  
...  

The stability control of a soft rock roadway is a crucial problem for sustainable utilization of limited coal resources in deep mining practices. To solve it, the soft rock types and failure mechanism of −890 entrance surrounding rock have been analyzed, taking Daqiang Coal Mine of China as an engineering example. The analysis shows that the damage to the surrounding rock was characterized by asymmetry, large deformation, severe damage, and extended durations. The surrounding rock can be divided into high-stress-jointed-strong expansion soft rock based on S-M scanning and mineral analysis. Numerical simulation is used to reproduce the failure process of the original supporting system and analyze the deformation of the surrounding rock, range of plastic zone, and distribution of the stress field. The failure mechanism is thus defined for a deep soft rock roadway. Combined with the above studies, the deformation mechanics of the surrounding rock is summarized as type IABIIABIIIABC. The stability transformation mechanism of the surrounding rock is proposed, based on which the control principle of deformation stability of a surrounding rock is formed. According to the control principle, “high strength support controls the surrounding rock deformation. The large deformation of the flexible support system releases the accumulated energy to the surrounding rock, and long-term deformation of the surrounding rock is controlled by high strength truss support.” Meanwhile, the constant-resistance, rigid, and flexible coupling (CRRFC) support system is proposed. The numerical analysis demonstrated that the CRRFC support system can effectively reinforce the shallow surrounding rock and improve the bearing capacity. Simultaneously, the development of the surrounding rock malignant plastic zone is effectively controlled. The application results show that the large deformation of the roadway can be effectively controlled by the CRRFC support system, which provides applications for similar engineering.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xiaoming Sun ◽  
Bo Zhang ◽  
Zhigang Tao ◽  
Chengwei Zhao ◽  
Jian Wang

The deformation characteristics of the rock mass in the intersection between the Muzhailing highway tunnel and the inclined shaft is a complicated three-dimensional problem. Under the influence of high geostress, large deformation hazards may occur in the surrounding rock. Taking this as the research background, this paper analyzes the deformation mechanism of surrounding rock before and after prestressed anchor cable support through numerical simulation. Then, through theoretical analysis, a new tunnel support method using high prestressed constant resistance and large deformation anchor cable was proposed. The field monitoring results show that the constant resistance and large deformation anchor cable support can well control the deformation of surrounding rock, and the maximum deformation is within 300 mm. At the same time, the constant resistance anchor cable can always maintain a high prestress, which makes the stress of the surrounding rock uniform, and reduces the risk of damage to the steel arch due to local pressure. Moreover, the support method limits the expansion of the plastic zone and improves the overall stability of the surrounding rock.


2021 ◽  
Vol 13 (8) ◽  
pp. 4412
Author(s):  
Houqiang Yang ◽  
Nong Zhang ◽  
Changliang Han ◽  
Changlun Sun ◽  
Guanghui Song ◽  
...  

High-efficiency maintenance and control of the deep coal roadway surrounding rock stability is a reliable guarantee for sustainable development of a coal mine. However, it is difficult to control the stability of a roadway that locates near a roadway with large deformation. With return air roadway 21201 (RAR 21201) in Hulusu coal mine as the research background, in situ investigation, theoretical analysis, numerical simulation, and engineering practice were carried out to study pressure relief effect on the surrounding rock after the severe deformation of the roadway. Besides, the feasibility of excavating a new roadway near this damaged one by means of pressure relief effect is also discussed. Results showed that after the strong mining roadway suffered huge loose deformation, the space inside shrank so violently that surrounding rock released high stress to a large extent, which formed certain pressure relief effect on the rock. Through excavating a new roadway near this deformed one, the new roadway could obtain a relative low stress environment with the help of the pressure relief effect, which is beneficial for maintenance and control of itself. Equal row spacing double-bearing ring support technology is proposed and carried out. Engineering practice indicates that the new excavated roadway escaped from possible separation fracture in the roof anchoring range, and the surrounding rock deformation of the new roadway is well controlled, which verifies the pressure relief effect mentioned. This paper provides a reference for scientific mining under the condition of deep buried and high stress mining in western China.


2018 ◽  
Vol 175 ◽  
pp. 03025
Author(s):  
Feng Zhou ◽  
Hongjian Jiang ◽  
Xiaorui Wang

The problem about the stability of tunnel surrounding rock is always an important research object of geotechnical engineering, and the right or wrong of the result from stability analysis on surrounding rock is related to success or failure of an underground project. In order to study the deformation rules of weak surrounding rock along with lateral pressure coefficient and burying depth varying under high geostress and discuss the dynamic variation trend of surrounding rock, the paper based on the application of finite difference software of FLAC3D, which can describe large deformation character of rock mass, analog simulation analysis of surrounding rock typical section of the class II was proceeded. Some conclusions were drawn as follows: (1) when burying depth is invariable, the displacements of tunnel surrounding rock have a trend of increasing first and then decreasing along with increasing of lateral pressure coefficient. The floor heave is the most sensitive to change of lateral pressure coefficient. The horizontal convergence takes second place. The vault subsidence is feeblish to change of lateral pressure coefficient. (2) The displacements of tunnel surrounding rock have some extend increase along with increasing of burying depth. The research conclusions are very effective in analyzing the stability of surrounding rock of Yunling tunnel. These are going to be a reference to tunnel supporting design and construction.


Sign in / Sign up

Export Citation Format

Share Document