Differences in anti-inflammatory properties of water soluble and insoluble bioactive polysaccharides in lipopolysaccharide-stimulated RAW264.7 macrophages

2020 ◽  
Vol 37 (5) ◽  
pp. 565-576
Author(s):  
Chun-Han Su ◽  
Yun-Ting Tseng ◽  
Kai-Yin Lo ◽  
Ming-Nan Lai ◽  
Lean-Teik Ng
2019 ◽  
Vol 48 (11) ◽  
pp. 1303-1309
Author(s):  
Hyo-Seon Ryu ◽  
Mi Ja Lee ◽  
Ju Ri Ham ◽  
Ra-Yeong Choi ◽  
Hae-In Lee ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2745
Author(s):  
Peng Du ◽  
Jia Song ◽  
Huirui Qiu ◽  
Haorui Liu ◽  
Li Zhang ◽  
...  

Shanxi-aged vinegar, a traditional Chinese grain-fermented food that is rich in polyphenols, has been shown to have therapeutic effects on a variety of diseases. However, there has been no comprehensive evaluation of the anti-inflammatory activity of polyphenols extracted from Shanxi-aged vinegar (SAVEP) to date. The anti-inflammatory activities of SAVEP, both in RAW 264.7 macrophages and mice, were extensively investigated for the potential application of SAVEP as a novel anti-inflammatory agent. In order to confirm the notion that polyphenols could improve inflammatory symptoms, SAVEP was firstly detected by gas chromatography mass spectrometry (GC-MS). In total, 19 polyphenols were detected, including 12 phenolic acids. The study further investigated the protective effect of SAVEP on lipopolysaccharide-induced inflammation in RAW264.7 macrophages and ICR mice. The results showed that compared with those of the model group, SAVEP could remarkably recover the inflammation of macrophage RAW264.7 and ICR mice. SAVEP can normalise the expression of related proteins via the suppression of MAPK/NF-κB pathway activation, inhibiting the expression of iNOS and COX-2 proteins, and consequently the production of inflammatory factors, thus alleviating inflammatory stress. These results suggest that SAVEP may have a potential function against inflammation.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Hee-Geun Jo ◽  
Geon-Yeong Lee ◽  
Chae Yun Baek ◽  
Ho Sueb Song ◽  
Donghun Lee

Osteoarthritis (OA) is an age-related joint disease and one of the most common degenerative bone diseases among elderly people. The currently used therapeutic strategies relying on nonsteroidal anti-inflammatory drugs (NSAIDs) and steroids for OA are often associated with gastrointestinal, cardiovascular, and kidney disorders, despite being proven effective. Aucklandia lappa is a well-known traditional medicine. The root of A. lappa root has several bioactive compounds and has been in use as a natural remedy for bone diseases and other health conditions. We evaluated the A. lappa root extracts on OA progression as a natural therapeutic agent. A. lappa substantially reduced writhing numbers in mice induced with acetic acid. Monosodium iodoacetate (MIA) was injected into the rats through their knee joints of rats to induce experimental OA, which shows similar pathological characteristics to OA in human. A. lappa substantially reduced the MIA-induced weight-bearing of hind limb and reversed the cartilage erosion in MIA rats. IL-1β, a representative inflammatory mediator in OA, was also markedly decreased by A. lappa in the serum of MIA rats. In vitro, A. lappa lowered the secretion of NO and suppressed the IL-1β, COX-2, IL-6, and iNOS production in RAW264.7 macrophages activated with LPS. Based on its analgesic and anti-inflammatory effects, A. lappa could be a potential remedial agent against OA.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 503
Author(s):  
Györgyi Horváth ◽  
Eszter Csikós ◽  
Eichertné Violetta Andres ◽  
Tímea Bencsik ◽  
Anikó Takátsy ◽  
...  

Melilotus officinalis is known to contain several types of secondary metabolites. In contrast, the carotenoid composition of this medicinal plant has not been investigated, although it may also contribute to the biological activities of the drug, such as anti-inflammatory effects. Therefore, this study focuses on the isolation and identification of carotenoids from Meliloti herba and on the effect of isolated (all-E)-lutein 5,6-epoxide on primary sensory neurons and macrophages involved in nociception, as well as neurogenic and non-neurogenic inflammatory processes. The composition of the plant extracts was analyzed by high performance liquid chromatography (HPLC). The main carotenoid was isolated by column liquid chromatography (CLC) and identified by MS and NMR. The effect of water-soluble lutein 5,6-epoxide-RAMEB (randomly methylated-β-cyclodextrin) was investigated on Ca2+-influx in rat primary sensory neurons induced by the activation of the transient receptor potential ankyrin 1 receptor agonist to mustard-oil and on endotoxin-induced IL-1β release from isolated mouse peritoneal macrophages. (all-E)-Lutein 5,6-epoxide significantly decreased the percent of responsive primary sensory neurons compared to the vehicle-treated stimulated control. Furthermore, endotoxin-evoked IL-1β release from macrophages was significantly decreased by 100 µM lutein 5,6-epoxide compared to the vehicle-treated control. The water-soluble form of lutein 5,6-epoxide-RAMEB decreases the activation of primary sensory neurons and macrophages, which opens perspectives for its analgesic and anti-inflammatory applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ewelina Szliszka ◽  
Anna Mertas ◽  
Zenon P. Czuba ◽  
Wojciech Król

Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) is the main bioactive component of Brazilian green propolis. The aim of this study was to investigate the anti-inflammatory effect of artepillin C on LPS + IFN-γ- or PMA-stimulated RAW264.7 macrophages. The cell viability was evaluated by MTT and LDH assays. The radical scavenging ability was determined using DPPH•and ABTS•+. ROS and RNS generation was analyzed by chemiluminescence. NO concentration was detected by the Griess reaction. The release of various cytokines by activated RAW264.7 cells was measured in the culture supernatants using a multiplex bead array system based on xMAP technology. NF-κB activity was confirmed by the ELISA-based TransAM NF-κB kit. At the tested concentrations, the compound did not decrease the cell viability and did not cause the cytotoxicity. Artepillin C exerted strong antioxidant activity, significantly inhibited the production of ROS, RNS, NO, and cytokine IL-1β, IL-3, IL-4, IL-5, IL-9, IL-12p40, IL-13, IL-17, TNF-α, G-CSF, GM-CSF, MCP-1, MIP-1α, MIP-1β, RANTES, and KC, and markedly blocked NF-κB expression in stimulated RAW264.7 macrophages. Our findings provide new insights for understanding the mechanism involved in the anti-inflammatory effect of artepillin C and support the application of Brazilian green propolis in complementary and alternative medicine.


2006 ◽  
Vol 106 (3) ◽  
pp. 364-371 ◽  
Author(s):  
Byung-Chul Kim ◽  
Joung-Woo Choi ◽  
Hye-Young Hong ◽  
Sin-Ae Lee ◽  
Suntaek Hong ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5920
Author(s):  
Hyun Hwangbo ◽  
Seon Yeong Ji ◽  
Min Yeong Kim ◽  
So Young Kim ◽  
Hyesook Lee ◽  
...  

Chronic inflammation, which is promoted by the production and secretion of inflammatory mediators and cytokines in activated macrophages, is responsible for the development of many diseases. Auranofin is a Food and Drug Administration-approved gold-based compound for the treatment of rheumatoid arthritis, and evidence suggests that auranofin could be a potential therapeutic agent for inflammation. In this study, to demonstrate the inhibitory effect of auranofin on chronic inflammation, a saturated fatty acid, palmitic acid (PA), and a low concentration of lipopolysaccharide (LPS) were used to activate RAW264.7 macrophages. The results show that PA amplified LPS signals to produce nitric oxide (NO) and various cytokines. However, auranofin significantly inhibited the levels of NO, monocyte chemoattractant protein-1, and pro-inflammatory cytokines, such as interleukin (IL)-1β, tumor necrosis factor-α, and IL-6, which had been increased by co-treatment with PA and LPS. Moreover, the expression of inducible NO synthase, IL-1β, and IL-6 mRNA and protein levels increased by PA and LPS were reduced by auranofin. In particular, the upregulation of NADPH oxidase (NOX) 4 and the translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) induced by PA and LPS were suppressed by auranofin. The binding between the toll-like receptor (TLR) 4 and auranofin was also predicted, and the release of NO and cytokines was reduced more by simultaneous treatment with auranofin and TLR4 inhibitor than by auranofin alone. In conclusion, all these findings suggested that auranofin had anti-inflammatory effects in PA and LPS-induced macrophages by interacting with TLR4 and downregulating the NOX4-mediated NF-κB signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document