scholarly journals Quantitative and qualitative study of endogenous and exogenous growth regulators in eggplant (Solanum melongena) microspore cultures

Author(s):  
Antonio Calabuig-Serna ◽  
Carolina Camacho-Fernández ◽  
Ricardo Mir ◽  
Rosa Porcel ◽  
Esther Carrera ◽  
...  

AbstractIn eggplant microspore embryogenesis, embryos are produced and then transformed into undifferentiated calli, instead of developing as true embryos. This is the main current bottleneck that precludes this process from being efficient. In this work we aimed to shed light on the factors involved in the successful in vitro development of eggplant haploid embryos by evaluating the role of growth regulators (GRs) in this process. We analyzed the endogenous levels of different GRs, including auxins, cytokinins and gibberelins, as well as salicylic, jasmonic and abscisic acid, in microspores and microspore-derived embryos at different culture stages. We also analyzed the same GR profiles in leaf and anther wall tissues of different eggplant backgrounds. Finally, we assessed the application of different GR combinations to the culture medium. Our results showed that in eggplant there are no genotype-specific endogenous GR profiles that can be associated to a high embryogenic response. Instead, the embryogenic response seems related to different GR accumulation patterns during in vitro culture. The changes observed in the endogenous levels of salicylic and abscisic acid were not related to the embryo transition. There were, however, changes in the levels of indole acetic acid and dihydrozeatin. The best GR combination to promote callus production was 0.5 mg/L 1-naphthaleneacetic acid (NAA) and 0.5 mg/L 6-benzylaminopurine (BAP). A 20% reduction of NAA and BAP reduced embryo production but produced structures more anatomically similar to embryos. These results shed light on the role of GRs during the development of microspore-derived embryos in eggplant microspore cultures.

HortScience ◽  
2015 ◽  
Vol 50 (3) ◽  
pp. 374-382 ◽  
Author(s):  
Piyada Alisha Tantasawat ◽  
Atitaya Sorntip ◽  
Paniti Pornbungkerd

The effects of exogenous application of plant growth regulators (PGRs) were evaluated on both field performance and in vitro gynogenesis of ‘Chai Lai’ and ‘Big C’ cucumber (Cucumis sativus L.). Plants were sprayed with two concentrations of N6-furfuryladenine [kinetin (KIN); 2 and 20 ppm], 2,3,5-triiodobenzoic acid (TIBA; 1 and 10 ppm), naphthaleneacetic acid (NAA; 10 and 100 ppm), abscisic acid (ABA; 2 and 20 ppm), thidiazuron (TDZ; 1 and 10 ppm), and maleic hydrazide (MH; 10 and 100 ppm) to assess their effects on vegetative growth and floral and yield related traits in the Winter of 2013 and in the Summer of 2014 compared with distilled water control. Meanwhile, the effects of two PGRs (KIN and TIBA) on cucumber gynogenesis were also investigated in vitro. Growth parameters and floral and yield-related traits were significantly affected by the various PGRs in both cultivars during both seasons. In both cultivars, the highest yield was obtained with the application of 10 ppm NAA during the Winter of 2013 (1.5- to 1.8-fold over control) and with 1 ppm TIBA during the Summer of 2014 (2.1- to 2.2-fold over control). With regard to the ovary culture response, exogenous application of KIN and TIBA on floral buds tended to enhance callus formation in ‘Chai Lai’ cultured on I7 medium, whereas no effect was observed in ‘Big C’. The embryo-like structure (ELS) formation efficiencies also tended to increase with 2 and 20 ppm KIN and 1 ppm TIBA application in ‘Chai Lai’ and with 20 ppm KIN and 1 ppm TIBA application in ‘Big C’ when cultured on I7 medium. Nevertheless, TIBA at high concentrations (10 ppm) decreased the percentages of ELS formation and the number of ELSs/piece in both cultivars. These results suggest that the polar auxin transport may play a major role on growth, floral and yield-related traits, yield as well as in vitro gynogenesis in cucumber. However, the success of exogenous applications of these PGRs depended on several factors including plant genotypes, growing seasons, types and concentrations of PGRs, and for ovary culture, the responses also varied according to the induction media used. Chemical names: abscisic acid (ABA); maleic hydrazide (MH); naphthaleneacetic acid (NAA); N6-furfuryladenine (kinetin; KIN); thidiazuron (TDZ); 2,3,5-triiodobenzoic acid (TIBA).


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 320
Author(s):  
Nisar Ahmad Zahid ◽  
Hawa Z.E. Jaafar ◽  
Mansor Hakiman

Ginger (Zingiber officinale Roscoe) var. Bentong is a monocotyledon plant that belongs to the Zingiberaceae family. Bentong ginger is the most popular cultivar of ginger in Malaysia, which is conventionally propagated by its rhizome. As its rhizomes are the economic part of the plant, the allocation of a large amount of rhizomes as planting materials increases agricultural input cost. Simultaneously, the rhizomes’ availability as planting materials is restricted due to the high demand for fresh rhizomes in the market. Moreover, ginger propagation using its rhizome is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied to produce disease-free planting materials of ginger to overcome these problems. Hence, the in vitro-induced microrhizomes are considered as alternative disease-free planting materials for ginger cultivation. On the other hand, Bentong ginger has not been studied for its microrhizome induction. Therefore, this study was conducted to optimize sucrose and plant growth regulators (PGRs) for its microrhizome induction. Microrhizomes were successfully induced in Murashige and Skoog (MS) medium supplemented with a high sucrose concentration (>45 g L−1). In addition, zeatin at 5–10 µM was found more effective for microrhizome induction than 6-benzylaminopurine (BAP) at a similar concentration. The addition of 7.5 µM 1-naphthaleneacetic acid (NAA) further enhanced microrhizome formation and reduced sucrose’s required dose that needs to be supplied for efficient microrhizome formation. MS medium supplemented with 60 g L−1 sucrose, 10 µM zeatin and 7.5 µM NAA was the optimum combination for the microrhizome induction of Bentong ginger. The in vitro-induced microrhizomes sprouted indoors in moist sand and all the sprouted microrhizomes were successfully established in field conditions. In conclusion, in vitro microrhizomes can be used as disease-free planting materials for the commercial cultivation of Bentong ginger.


1974 ◽  
Vol 82 (1) ◽  
pp. 113-116 ◽  
Author(s):  
M. Abdel-Rahman ◽  
F. M. R. Isenberg

SUMMARYExperiments were conducted to study the effect of plant injection with growth regulators on the dormancy of onion bulbs cv. Elba Globe. Application of abscisic acid induced early senescence of the leaves and prolonged the rest period of the bulbs. This effect was partially overcome by subsequent applications of gibberellin, auxin or cytokinin and totally overcome with the application of a mixture of the three hormones. Maleic hydrazide application prolonged the rest period by inhibiting both sprouting and rooting of the bulbs throughout the storage period. This inhibitory effect was not overcome by the subsequent application of auxin, gibberellin, kinetin, or their combinations. Ethephon application increased rooting of bulbs and partially overcame the effect of abscisic acid on dormancy.


2021 ◽  
Author(s):  
Yuan-yuan Meng ◽  
Shi-jie Song ◽  
Sven Landrein

Abstract Passiflora xishuangbannaensis (Passifloraceae) is endemic to a few sites of Mengyang nature reserve in Yunnan, Xishuangbanna and less than 40 individuals have been recorded. Nine Passiflora species are endemic to Yunnan with most species occurring in South America, making P. xishuangbannaensis highly significant and emblematic to the conservation work in the region. This study is designed to provide the first protocol for in vitro organogenesis and plant regeneration for ex situ conservation and reintroduction for an Asian Passiflora species. Using internodes, petioles and tendrils we optimize calli formation and root elongation using several plant growth regulators, individually or in combination. We also assess the genetic stability of regenerated cells. The maximum callus induction and shoot bud differentiation were both achieved on half Murashige and Skoog basal medium supplemented with 4.44 µM 6-Benzylaminopurine and 1.08 µM 1-Naphthaleneacetic acid. The best rooting was achieved from 30 days old, regenerated shoots on half Murashige and Skoog basal medium supplemented with 1.08 µM 1-Naphthaleneacetic acid. Micropropagated plants were subjected to inter simple sequence repeat markers analyses. Collectively, 86 bands were generated from 6 primers of which 12 bands were polymorphic, showing genetic variation between the regenerated plantlets and the original plant. Response to plant growth regulators was more specific than most other studies using South American species, which could be explained by the morphological and physiological differences between South American and Asian Passiflora species


2017 ◽  
Vol 13 (24) ◽  
pp. 145
Author(s):  
Sadek Chahredine ◽  
Nadia Ykhlef

The aim of this study is to determine the effects of different concentrations and combinations of the phytohormones, 1-naphthaleneacetic acid (NAA), and 6-benzylaminopurine (BAP): M1 (0.5 mg / l +1 mg / l), M2 (1 mg / l + 0.5 mg / l) , M3 (2 mg / l +2 mg / l), M4 (0.5 mg / l + l mg / l, NAA), M5 (1.0 mg / l + l mg / l , NAA), and M6 (2.0 mg / l + l mg / l, NAA). This study was carried out in dark condition on callus induction of potato plants (Solanum tuberosum L.) cultivars from potato tuber bud so as to demonstrate the role of light. The callus initiation begins after 7 days of incubation for all studied media. After two months of incubation, the better development of callus was noted in Spunta variety by using medium M1, M2, M3, and M6. The calluses took a compact structure of brown-white color for both varieties with a callus induction rate of 20- 40%. This was collected with kondor variety for M2 and (M3, M4, M5) media respectively and 10-30% for M4 (M1, M2, M3) for Spunta variety also. The highest fresh weight was recorded on M2 medium with 0.26g for Kondor variety and 0.93g for Spunta variety.


Author(s):  
Ileana MICLEA ◽  
Rita BERNAT

The aim of the current research was to find the best plant growth regulators for the multiplication of Sarracenia purpurea. Murashige and Skoog medium (MS) was prepared with macronutrients and micronutrients at 1/3 strength, full strength vitamins, supplemented with 30 g/l sucrose and 5 g/l phytagel and autoclaved. After cooling 0.5 mg\l α-naphthaleneacetic acid (NAA), 5 mg\l 6-benzyladenine (BA) or 0.5 mg\l NAA + 3 mg\l BA were added. Young S. purpurea plants were selected and transferred to media with or without plant growth regulators and cultured for 12 weeks. At the end of this time frame number of roots, root length (cm) and number of shoots were evaluated and differences were analysed by the analysis of variance and interpreted using the Tuckey test. The largest number of roots grew in medium supplemented with 0.5 mg\l NAA but the the absence of plant growth regulators increased their length. The best conditions for shoot multiplication were provided by supplementing 1/3MS with 5 mg\l BA.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Shivani Kumar ◽  
Divya Choudhary ◽  
Anupam Patra ◽  
Neel Sarovar Bhavesh ◽  
Perumal Vivekanandan

Abstract Background G-quadruplexes regulate gene expression, recombination, packaging and latency in herpesviruses. Herpesvirus-encoded miRNAs have been linked to important biological functions. The presence and the biological role of G-quadruplexes have not been studied in the regulatory regions of virus miRNA. We hypothesized that herpesvirus-encoded miRNAs are regulated by G-quadruplexes in their promoters. Results We analyzed the 1 kb regulatory regions of all herpesvirus-encoded miRNAs for the presence of putative quadruplex-forming sequences (PQS). Over two-third (67%) of the regulatory regions of herpesvirus miRNAs had atleast 1 PQS. The 200 bp region of the promoter proximal to herpesvirus miRNA is particularly enriched for PQS. We chose to study the G-quadruplex motifs in the promoters of miR-K12 cluster in Kaposi's sarcoma-associated Herpesvirus (KSHV miR-K12–1-9,11) and the miR-US33 encoded by Human Cytomegalovirus (HCMV miR-US33). Biophysical characterization indicates that the G-quadruplex motifs in the promoters of the KSHV miR-K12 cluster and the HCMV miR-US33 form stable intramolecular G-quadruplexes in vitro. Mutations disrupting the G-quadruplex motif in the promoter of the KSHV miR-K12 cluster significantly inhibits promoter activity, while those disrupting the motif in the promoter of HCMV miR-US33 significantly enhance the promoter activity as compared to that of the respective wild-type promoter. Similarly, the addition of G-quadruplex binding ligands resulted in the modulation of promoter activity of the wild-type promoters (with intact G-quadruplex) but not the mutant promoters (containing quadruplex-disrupting mutations). Conclusion Our findings highlight previously unknown mechanisms of regulation of virus-encoded miRNA and also shed light on new roles for G-quadruplexes in herpesvirus biology.


2008 ◽  
Vol 34 (No. 2) ◽  
pp. 77-83 ◽  
Author(s):  
S. Kumar ◽  
V. Awasthi ◽  
K. Kanwar J

The influence of growth regulators and nitrogenous compounds on in vitro bulblet formation and growth was studied in two hybrids of <i>Lilium</i>. Bulbscales isolated from pre-cooled bulbs of hybrids Rosato and Marco Polo were used. The basal portion with plate (5 &times; 6 mm) of inner bulbscales was cultured on Murashige and Skoog (MS) medium containing 0.5 or 1 mg/dm<sup>3</sup> naphthaleneacetic acid (NAA) and/or benzyladenine (BA). The presence of NAA (0.5 mg per dm<sup>3</sup>) showed higher explant regeneration, producing about three bulblets per explant as compared to control. About four bulblets per explant were produced at both concentrations of BA. The bulblets with significantly higher fresh weight were obtained on medium containing NAA. Approximately a three-fold increase of bulblet fresh weight was observed with all the concentrations of TDZ in both cultivars. The bulblets cultured with nitrogenous compounds after attaining the size of 14&minus;16 cm flowered during the second year of the growing period without any phenotypic variations.


2017 ◽  
Vol 98 (3) ◽  
pp. 167-173
Author(s):  
A. Mujib ◽  
Tanu Pipal ◽  
Muzamil Ali ◽  
Dipti Tonk ◽  
Nadia Zafar ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1325
Author(s):  
Tal Tamari ◽  
Rawan Kawar-Jaraisy ◽  
Ofri Doppelt ◽  
Ben Giladi ◽  
Nadin Sabbah ◽  
...  

Vascularization is a prerequisite for bone formation. Endothelial progenitor cells (EPCs) stimulate bone formation by creating a vascular network. Moreover, EPCs secrete various bioactive molecules that may regulate bone formation. The aim of this research was to shed light on the pathways of EPCs in bone formation. In a subcutaneous nude mouse ectopic bone model, the transplantation of human EPCs onto β-TCP scaffold increased angiogenesis (p < 0.001) and mineralization (p < 0.01), compared to human neonatal dermal fibroblasts (HNDF group) and a-cellular scaffold transplantation (β-TCP group). Human EPCs were lining blood vessels lumen; however, the majority of the vessels originated from endogenous mouse endothelial cells at a higher level in the EPC group (p < 01). Ectopic mineralization was mostly found in the EPCs group, and can be attributed to the recruitment of endogenous mesenchymal cells ten days after transplantation (p < 0.0001). Stromal derived factor-1 gene was expressed at high levels in EPCs and controlled the migration of mesenchymal and endothelial cells towards EPC conditioned medium in vitro. Blocking SDF-1 receptors on both cells abolished cell migration. In conclusion, EPCs contribute to osteogenesis mainly by the secretion of SDF-1, that stimulates homing of endothelial and mesenchymal cells. This data may be used to accelerate bone formation in the future.


Sign in / Sign up

Export Citation Format

Share Document