Efficient electrochemical oxidation of reactive dye using a novel Ti/nanoZnO–CuO anode: electrode characterization, modeling, and operational parameters optimization

Author(s):  
Nastaran Akbari ◽  
Farideh Nabizadeh Chianeh ◽  
Ali Arab
2019 ◽  
Vol 233 (10) ◽  
pp. 1447-1468 ◽  
Author(s):  
Kajal Gautam ◽  
Sushil Kumar ◽  
Suantak Kamsonlian

Abstract Reactive dyes are essential materials for the modern lifestyle due to rapid industrialization and urbanization, but they cause adverse effects on the environment. This research work aimed to decolourize the synthetic aqueous solution containing Reactive Black B (RBB) dye using electrocoagulation (EC) process with iron electrodes in batch reactor. The effect of operational parameters such as initial pH (3–9), the distance between electrodes (0.5–2 cm), current density (1.1–8.4 mA/cm2) and initial dye concentration (100–400 mg/L), was investigated in the presence of sodium chloride to maintain the conductivity of electrolytes. Under optimal value of process parameters, high decolourization (99.6%) was obtained at 25 min. The experimental data showed that pseudo-second order kinetics with a correlation coefficient (R2 = 0.97) and Sips isotherm with a correlation coefficient (R2 = 0.98) were found to be well fitted for kinetic and adsorption equilibrium models, respectively. The economic efficiency was also calculated on the basis of electrical energy consumption (EEC), specific electrical energy consumption (SEEC), and current efficiency, respectively. Moreover, characterization of EC generated sludge was also carried out by proximate analysis, IR spectra and XRD analysis. The results revealed that EC process using Fe electrode is quite efficient and clean process for decolourization of reactive dye from aqueous solution.


Author(s):  
D. S. Kalabuhov ◽  
V. A. Grigoriev ◽  
A. O. Zagrebelnyi ◽  
D. S. Diligensky

Abstract The article describes the adjusted parametrical turboshaft gas turbine engine mass model that is applied for the helicopter engine operating cycle parameters optimization during a conceptual engineering. During the operation of the take-off mass, which indirectly characterizes the cost of materials for the entire designed aircraft system, one of the main components which determines the coordination of the helicopter and its engine parameters is a mass of the gas turbine power unit. Moreover, during the parametrical studies the designed mass of a power unit should be defined by the parameters of a gas turbine engine; however, this type of dependencies is not that well enough studied for today. Therefore the evaluation of the dependency between the engine mass and its operational parameters is performed by using either generalized statistical data for existing designs or by parametrical mass models since there is nothing more precise up to date. However as new types of gas turbine engines appear it is required to update the values of parametrical model coefficients. This article describes the influence of different cooling system units on the engine mass and also clarifies the coefficients that specify the engine mass advance by introducing the structural-technological measures. The last one is highly dependent on the designed gas turbine engine (GTE) serial production year. It also has been proposed to represent some coefficients that are used in the model as dependencies of the main operational parameters. This has allowed to perform the parametrical study and to gain predictive solutions in correspondence to the modern engine design level.


2015 ◽  
Vol 68 (3) ◽  
pp. 471 ◽  
Author(s):  
Faridah Abu Bakar ◽  
Jan-Yves Ruzicka ◽  
Ida Nuramdhani ◽  
Bryce E. Williamson ◽  
Meike Holzenkaempfer ◽  
...  

The photocatalytic decolorization and degradation of an anthraquinone-based reactive dye, C.I. Reactive Blue 19, was carried out in laboratory-scale experiments with the systematic variation of several operational parameters, including electron acceptor (hydrogen peroxide) concentration, initial pH, use of buffer solution, aeration, and the specific chemical nature of the buffer solution. Photodegradation was performed under simulated natural light, and conditions were chosen to mimic those found in industry. Mineralization and decolorization were monitored by UV-vis spectroscopy and total organic carbon analysis, and kinetics were modelled using an in-series first-order combination mechanism. Reaction products were examined and monitored by high-resolution mass spectrometry. Under the conditions explored, the reaction rate was found to depend not only on pH and electron acceptor concentration, but also on the specific chemical nature of the buffer used.


Sign in / Sign up

Export Citation Format

Share Document