Large area deposition of Pb(Zr,Ti)O3 thin films for piezoelectric MEMS devices

2007 ◽  
Vol 20 (1) ◽  
pp. 17-20 ◽  
Author(s):  
Gunnar Suchaneck ◽  
Vinay S. Vidyarthi ◽  
Marianne Reibold ◽  
Alexander Deyneka ◽  
Lubomir Jastrabik ◽  
...  
2020 ◽  
Vol 10 (04) ◽  
pp. 2050010
Author(s):  
M. Kathiresan ◽  
Jain Jose ◽  
E. Varadarajan ◽  
R. Ramesh ◽  
V. Natarajan ◽  
...  

Doped lead–zirconate–titanate (PZT) thin films are preferred for the development of micro–electro–mechanical systems (MEMS)-based acoustic sensors because of their inherent higher dielectric and piezoelectric coefficients. Patterning process is used to develop such MEMS devices which is highly complex even for undoped PZT thin films; therefore, the problem is further cumbersome for doped PZT thin films due to the presence of added dopant elements and their associated chemistry. This paper presents patterning of strontium (Sr) and lanthanum (La) co-doped PZT thin film (PSLZT) deposited on platinized silicon substrate using wet and dry etching processes for fabricating a diaphragm structure with thickness of 15–25[Formula: see text][Formula: see text]m and diameter of 1.4–2[Formula: see text]mm, suitable for acoustic sensing applications. The effects of various etching conditions have been studied and the results are reported. It is found that the dry etching is the most suited process for realizing the piezoelectric MEMS structure due to its higher etching resolution. An appreciable etching rate of 260–270[Formula: see text]nm/min with smooth vertical sidewalls is achieved. The silicon diaphragm with patterned PSLZT thin film is found to retain more than 80% of its dielectric and piezoelectric coefficients and has a resonance of 1.43[Formula: see text]MHz.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3859 ◽  
Author(s):  
Kyriakos Mouratis ◽  
Valentin Tudose ◽  
Cosmin Romanitan ◽  
Cristina Pachiu ◽  
Oana Tutunaru ◽  
...  

A new approach regarding the development of nanostructured V2O5 electrochromic thin films at low temperature (250 °C), using air-carrier spray deposition and ammonium metavanadate in water as precursor is presented. The obtained V2O5 films were characterized by X-ray diffraction, scanning electron microscopy and Raman spectroscopy, while their electrochromic response was studied using UV-vis absorption spectroscopy and cyclic voltammetry. The study showed that this simple, cost effective, suitable for large area deposition method can lead to V2O5 films with large active surface for electrochromic applications.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2397
Author(s):  
Kyriakos Mouratis ◽  
Ioan Valentin Tudose ◽  
Andrianna Bouranta ◽  
Cristina Pachiu ◽  
Cosmin Romanitan ◽  
...  

Nanostructured electrochromic V2O5 thin films were prepared using spray pyrolysis technique growth at a temperature of 250 °C using air-carrier spray deposition, starting from ammonium metavanadate precursor in water, followed by annealing at 400 °C in O2 atmosphere for 2 h. The V2O5 films were characterized by X-ray diffraction, scanning electron microscopy, and Raman spectroscopy, and their electrochromic behavior was studied using optical spectroscopy and cyclic voltammetry in both the as-deposited and postannealing case. The studies showed that the simple, cost -effective, suitable for large area deposition method used can lead to an interesting surface structuring with large active surface properties suitable for electrochromic applications. Further studies for growth optimization and improvements of films properties and stability are to be performed.


2020 ◽  
Vol 31 (11) ◽  
pp. 8136-8143
Author(s):  
Saeedeh Soleimani ◽  
Benjamin Kalas ◽  
Zsolt.E. Horváth ◽  
Zsolt Zolnai ◽  
Zsolt Czigány ◽  
...  

2010 ◽  
Vol 2010.16 (0) ◽  
pp. 101-102
Author(s):  
Naoki Fukasawa ◽  
Yuuto Takeuchi ◽  
Yuuki Shimura ◽  
Masahiro Matsubara ◽  
Eiichi Kondoh

2012 ◽  
Vol 468-471 ◽  
pp. 1912-1915
Author(s):  
Hui Zhi Ren ◽  
Ying Zhao ◽  
Xiao Dan Zhang ◽  
Hong Ge ◽  
Zong Pan Wang

We report on microcrystalline silicon thin films and a-Si:H/a-SiGe:H/μc-Si:H triple-junction p-i-n solar cells deposited on large-area glass substrate. Microcrystalline silicon (μc-Si:H) bottom cells were deposited at a VHF-PECVD deposition system with 40.68MHz. It is necessary to develop the uniformity of μc-Si:H thin films for large-area deposition of high-quality triple-junction solar cells. By optimizing the deposition parameters, μc-Si:H thin films have been obtained with good thickness and very good crystalline volume fractions uniformity over the whole substrates area. The triple-junction module have been successful fabricated. The best module on 0.79 m2 size substrates has an initial total-area efficiency of 8.35%.


2007 ◽  
Vol 515 (19) ◽  
pp. 7542-7545 ◽  
Author(s):  
X. Multone ◽  
C.N. Borca ◽  
P. Hoffmann

Author(s):  
Li-Peng Wang ◽  
E. Ginsburg ◽  
F. Gerfers ◽  
D. Samara-Rubio ◽  
B. Weinfeld ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 944
Author(s):  
Youcao Ma ◽  
Jian Song ◽  
Xubo Wang ◽  
Yue Liu ◽  
Jia Zhou

Compared to aluminum nitride (AlN) with simple stoichiometry, lead zirconate titanate thin films (PZT) are the other promising candidate in advanced micro-electro-mechanical system (MEMS) devices due to their excellent piezoelectric and dielectric properties. The fabrication of PZT thin films with a large area is challenging but in urgent demand. Therefore, it is necessary to establish the relationships between synthesis parameters and specific properties. Compared to sol-gel and pulsed laser deposition techniques, this review highlights a magnetron sputtering technique owing to its high feasibility and controllability. In this review, we survey the microstructural characteristics of PZT thin films, as well as synthesis parameters (such as substrate, deposition temperature, gas atmosphere, and annealing temperature, etc.) and functional proper-ties (such as dielectric, piezoelectric, and ferroelectric, etc). The dependence of these influential factors is particularly emphasized in this review, which could provide experimental guidance for researchers to acquire PZT thin films with expected properties by a magnetron sputtering technique.


Sign in / Sign up

Export Citation Format

Share Document