Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites

2011 ◽  
Vol 47 (2) ◽  
pp. 599-609 ◽  
Author(s):  
Mark Hughes
2020 ◽  
Vol 18 (1) ◽  
pp. 275-286 ◽  
Author(s):  
Raquel Ortega ◽  
Mario D. Monzón ◽  
Zaida C. Ortega ◽  
Eoin Cunningham

AbstractThe interest in natural fibre reinforced composites is growing in industrial applications due to natural fibres being an attractive alternative to synthetic fibres. However, it is necessary to improve the fire behaviour of the material because natural fibres have a high combustibility. The objective of this work is to evaluate the fire resistance of polymer composites reinforced with natural fibre fabric, using magnesium hydroxide as flame retardant for the polymeric matrix and alkali treatment for the fibre. The types of fabric are banana, banana with cotton and linen; and long banana fibre has been used for the formation of a nonwoven. The fire test is carried out based on ISO 9773 standard and the effect of the additive has been studied, chemical treatment, type of fabric and number of layers. Through statistical analysis, it is concluded that the flame propagation speed has a decreasing relation with respect to the percentage, but it decreases the mechanical properties considerably. In addition, the number of layers and type of fabric influence the fire properties. Finally, it is concluded that composites reinforced with linen fabric have the best mechanical properties, but banana nonwoven with 60% additive has the best fire behaviour.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 973
Author(s):  
Md Syduzzaman ◽  
Md Abdullah Al Faruque ◽  
Kadir Bilisik ◽  
Maryam Naebe

The increasing global environmental concerns and awareness of renewable green resources is continuously expanding the demand for eco-friendly, sustainable and biodegradable natural fibre reinforced composites (NFRCs). Natural fibres already occupy an important place in the composite industry due to their excellent physicochemical and mechanical properties. Natural fibres are biodegradable, biocompatible, eco-friendly and created from renewable resources. Therefore, they are extensively used in place of expensive and non-renewable synthetic fibres, such as glass fibre, carbon fibre and aramid fibre, in many applications. Additionally, the NFRCs are used in automobile, aerospace, personal protective clothing, sports and medical industries as alternatives to the petroleum-based materials. To that end, in the last few decades numerous studies have been carried out on the natural fibre reinforced composites to address the problems associated with the reinforcement fibres, polymer matrix materials and composite fabrication techniques in particular. There are still some drawbacks to the natural fibre reinforced composites (NFRCs)—for example, poor interfacial adhesion between the fibre and the polymer matrix, and poor mechanical properties of the NFRCs due to the hydrophilic nature of the natural fibres. An up-to-date holistic review facilitates a clear understanding of the behaviour of the composites along with the constituent materials. This article intends to review the research carried out on the natural fibre reinforced composites over the last few decades. Furthermore, up-to-date encyclopaedic information about the properties of the NFRCs, major challenges and potential measures to overcome those challenges along with their prospective applications have been exclusively illustrated in this review work. Natural fibres are created from plant, animal and mineral-based sources. The plant-based cellulosic natural fibres are more economical than those of the animal-based fibres. Besides, these pose no health issues, unlike mineral-based fibres. Hence, in this review, the NFRCs fabricated with the plant-based cellulosic fibres are the main focus.


Fibre reinforced composites have been an essential concern in various fields, especially in the field of aerospace owing to its high strength to weight ratio, toughness, corrosion resistant and low cost. Natural fibre reinforced composites have produced better results in mechanical properties like impact, toughness and fatigue strengths when compared to synthetic fibre reinforced composites. Recently researches have been conducted on different varieties of natural fibres for use in plastics such as jute straw, wood, rice husk, wheat, barley etc. Natural fibres have also attracted the attention of researchers due to its availability, renewability, degradability and most importantly ecofriendly. In this work an attempt is made to improve the mechanical properties of the composite and also to enhance the compatibility of the fibres with the matrix. The composite is prepared by reinforcing banana fibres into unsaturated epoxy matrix using hand layup method. Mechanical properties such as tensile strength, flexural strength and hardness strengths are carried out on the specimens made by reinforcing with 5%, 10 % and 15 %concentration of banana fibre by weight. The results showed that the composite with 15% concentration of banana fibre produced higher tensile strength of 21.43 MPa, flexural strength of 0.895 kPa and Shroud hardness of 59.3.


2018 ◽  
Vol 7 (2) ◽  
pp. 110-112
Author(s):  
Sasikumar Gnanasekaran ◽  
Sivasangari Ayyappan

Natural fibres namely sisal, jute, kenaf, hemp, abaca and banana are mainly used in industries for developing Natural fibres composites. They find many applications such as automobiles, furniture, packing and construction due to many merits such as their low cost, good mechanical properties, non-toxic, low weight, less damage to processing equipment, improved surface finish, abundant and renewable resources. The objective of this paper is to review the applications of various kenaf fibre reinforced polymer composites which will provide a base for further research in this area.


2018 ◽  
Vol 32 (9) ◽  
pp. 1282-1302 ◽  
Author(s):  
T Rajmohan ◽  
R Vinayagamoorthy ◽  
K Mohan

In the modern years, natural fibre composites have been converted into significant materials in many industries such as automotive, aerospace and and so on. Several types of natural fibre composites, particularly plant-based fibre composites, have been developed and tested. However, their mixed nature, engineer’s requirement of experience, an understanding of machinability databases, limit setting and trouble in manufacturing are barriers to extensive use of composites. The final shape of the natural fibre–reinforced composites (NFRCs) are obtained by conventional and unconventional machining. Machining of these composites generates confront due to the heterogeneous and anisotropic nature. Different methodologies and tools are intended to overcome the machining defects. In this article, a wide range of literature review on machining of NFRCs is examined with focus on conventional and unconventional machining operation. This article also discusses the influences of machining parameters and optimum conditions for machining of NFRCs.


Sign in / Sign up

Export Citation Format

Share Document