Review on effect machining parameters on performance of natural fibre–reinforced composites (NFRCs)

2018 ◽  
Vol 32 (9) ◽  
pp. 1282-1302 ◽  
Author(s):  
T Rajmohan ◽  
R Vinayagamoorthy ◽  
K Mohan

In the modern years, natural fibre composites have been converted into significant materials in many industries such as automotive, aerospace and and so on. Several types of natural fibre composites, particularly plant-based fibre composites, have been developed and tested. However, their mixed nature, engineer’s requirement of experience, an understanding of machinability databases, limit setting and trouble in manufacturing are barriers to extensive use of composites. The final shape of the natural fibre–reinforced composites (NFRCs) are obtained by conventional and unconventional machining. Machining of these composites generates confront due to the heterogeneous and anisotropic nature. Different methodologies and tools are intended to overcome the machining defects. In this article, a wide range of literature review on machining of NFRCs is examined with focus on conventional and unconventional machining operation. This article also discusses the influences of machining parameters and optimum conditions for machining of NFRCs.

2017 ◽  
Vol 37 (9) ◽  
pp. 879-895 ◽  
Author(s):  
Agnivesh Kumar Sinha ◽  
Harendra K. Narang ◽  
Somnath Bhattacharya

Abstract Extensive efforts have been made in the last decade for the development of natural fibre composites. This development paved the way for engineers and researchers to come up with natural fibre composites (NFCs) that exhibit better mechanical properties. The present review is based on the mechanical properties of jute, abaca, coconut, kenaf, sisal, and bamboo fibre-reinforced composites. Before selecting any NFC for a particular application, it becomes necessary to understand its compatibility for the same, which can be decided by knowing its mechanical properties such as tensile, flexural, and impact strengths. This review paper emphasises on the factors influencing the mechanical properties of NFCs like the type of matrix and fibre, interfacial adhesion, and compatibility between matrix and fibre. Efforts are also made to unveil the research gaps from the past literatures, as a result of which it is inferred that there is very limited work published in the field of vibration incorporating potential fillers such as red mud and fly ash with NFCs.


2003 ◽  
Vol 12 (6) ◽  
pp. 096369350301200 ◽  
Author(s):  
S. Goutianos ◽  
T. Peijs

Currently most developments in the area of natural fibre reinforced composites have focused on random discontinuous fibre composite systems. The development of continuous fibre reinforced composites is, however, essential for manufacturing materials, which can be used in load-bearing/structural applications. The main problem in this case is the optimisation of the yarn to be used to manufacture the textile reinforcement. Low twisted yarns display a very low strength when tested dry in air and therefore they can not be used in processes such as pultrusion or textile manufacturing routes. On the other hand, by increasing the level of twist, a degradation of the mechanical properties is observed in impregnated yarns (e.g. unidirectional composites) similar to off-axis composites. Additionally, a high level of twist decreases the permeability of the yarns. This problem is addressed in the current work using yarns based on both long and short flax fibres.


1992 ◽  
Vol 27 (1) ◽  
pp. 29-42 ◽  
Author(s):  
W J Cantwell ◽  
J Morton

In this paper the various failure modes which occur in long fibre composites are described and discussed. The significance of each of these fracture mechanisms, in terms of their energy-dissipating capacity as well as their effect on the residual load-bearing properties, is considered. A brief review of both the destructive and non-destructive techniques used for detecting and characterizing defects and damage is presented. The ability of each technique to identify the various fracture mechanisms involved in the failure of long fibre reinforced composites is discussed and their overall suitability for damage detection evaluated.


Sign in / Sign up

Export Citation Format

Share Document