Tool wear-induced microstructure evolution in localized deformation layer of machined Ti–6Al–4V

2019 ◽  
Vol 55 (8) ◽  
pp. 3636-3651 ◽  
Author(s):  
Xiaoliang Liang ◽  
Zhanqiang Liu ◽  
Qingqing Wang ◽  
Bing Wang ◽  
Xiaoping Ren
2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110112
Author(s):  
Li Xun ◽  
Wang Ziming ◽  
Yang Shenliang ◽  
Guo Zhiyuan ◽  
Zhou Yongxin ◽  
...  

Titanium alloy Ti1023 is a typical difficult-to-cut material. Tool wear is easy to occur in machining Ti1023, which has a significant negative effect on surface integrity. Turning is one of the common methods to machine Ti1023 parts and machined surface integrity has a direct influence on the fatigue life of parts. To control surface integrity and improve anti-fatigue behavior of Ti1023 parts, it has an important significance to study the influence of tool wear on the surface integrity and fatigue life of Ti1023 in turning. Therefore, the effect of tool wear on the surface roughness, microhardness, residual stress, and plastic deformation layer of Ti1023 workpieces by turning and low-cycle fatigue tests were studied. Meanwhile, the influence mechanism of surface integrity on anti-fatigue behavior also was analyzed. The experimental results show that the change of surface roughness caused by worn tools has the most influence on anti-fatigue behavior when the tool wear VB is from 0.05 to 0.25 mm. On the other hand, the plastic deformation layer on the machined surface could properly improve the anti-fatigue behavior of specimens that were proved in the experiments. However, the higher surface roughness and significant surface defects on surface machined utilizing the worn tool with VB = 0.30 mm, which leads the anti-fatigue behavior of specimens to decrease sharply. Therefore, to ensure the anti-fatigue behavior of parts, the value of turning tool wear VB must be rigorously controlled under 0.30 mm during finishing machining of titanium alloy Ti1023.


2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-541-Pr9-546 ◽  
Author(s):  
A. Molinari ◽  
M. Nouari

2014 ◽  
Vol 29 (9) ◽  
pp. 941
Author(s):  
JIANG Jin-Long ◽  
WANG Qiong ◽  
HUANG Hao ◽  
ZHANG Xia ◽  
WANG Yu-Bao ◽  
...  

Author(s):  
Diego de Medeiros Barbosa ◽  
Leticia Helena Guimarães Alvarinho ◽  
Aristides Magri ◽  
Daniel Suyama

2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1489-1503
Author(s):  
Marwa Q. Ibraheem

In this present work use a genetic algorithm for the selection of cutting conditions in milling operation such as cutting speed, feed and depth of cut to investigate the optimal value and the effects of it on the material removal rate and tool wear. The material selected for this work was Ti-6Al-4V Alloy using H13A carbide as a cutting tool. Two objective functions have been adopted gives minimum tool wear and maximum material removal rate that is simultaneously optimized. Finally, it does conclude from the results that the optimal value of cutting speed is (1992.601m/min), depth of cut is (1.55mm) and feed is (148.203mm/rev) for the present work.


Author(s):  
Юрий Зубарев ◽  
Yuriy Zubarev ◽  
Александр Приемышев ◽  
Alexsandr Priyomyshev

Tool materials used for polymeric composite blank machining, kinds of tool material wear arising at machining these blanks, and also the impact of technological parameters upon tool wear are considered. The obtained results allow estimating the potentialities of physical models at polymeric composite blanks cutting.


Sign in / Sign up

Export Citation Format

Share Document