scholarly journals Mask-free three-dimensional epitaxial growth of III-nitrides

2020 ◽  
Vol 56 (1) ◽  
pp. 558-569
Author(s):  
Mariusz Rudziński ◽  
Sebastian Zlotnik ◽  
Marek Wójcik ◽  
Jarosław Gaca ◽  
Łukasz Janicki ◽  
...  

Abstract A novel catalyst-free and maskless growth approach is presented to form an ordered geometrical array of three-dimensional (3D) AlGaN/AlN microrods. The growth method is composed of a single growth step using metalorganic vapor phase epitaxy, achieving microstructures with homogeneous diameters, shapes and sizes over relatively large scale (on 2-in. wafer). The 3D AlGaN/AlN heterostructures are grown in a form of micro-sized columns elongated in one direction perpendicular to the substrate surface and with a hexagonal cross section. A careful examination of growth steps revealed that this technology allows to suppress coalescence and lateral overgrowth, promoting vertical 3D growth. Interestingly, two distinct morphologies can be obtained: honeycomb-like hexagonal arrangement perfectly packed and with twisted microrods layout, by controlling strain state in AlN buffer layers. Consequently, 3D AlGaN microrods on tensile-strained AlN templates show a 0° twisted morphology, while on compressive-strained templated a 30° twisted arrangement. Moreover, the optical and crystalline quality studies revealed that the top AlGaN layers of the examined 3D semiconductor structures are characterized by a low native point-defect concentration. These 3D AlGaN platforms can be applied for light emitting devices or sensing applications. Graphic abstract

Author(s):  
Xiuqing Hao ◽  
Jian Li ◽  
Xiaolu Song ◽  
Li Wang ◽  
Liang Li

A facile process for controllable fabrication of wetting surfaces with variable hierarchical structures on metallic substrates is proposed in this study. This process, which combines the through-mask electrochemical micromachining with hydrothermal growth method, could be applied on all kinds of type and size of conductive metal. First, the anodic dissolution process is predicted using numerical simulation and experiments. The formulation of electrolyte and the etching conditions in through-mask electrochemical micromachining are optimized. Ordered microstructures and smooth etched surface in large scale are obtained using the optimized parameters. Moreover, a technology has been explored to obtain various styles of multi-level structures through an alignment system or combining with a hydrothermal method of growing ZnO nanorods. The wetting effects of the rough three-dimensional surfaces are evaluated using a contact angle system. Furthermore, the wetting and the preliminary friction reduction effects of the rough three-dimensional surfaces are evaluated using contact angle system.


2011 ◽  
Vol 335-336 ◽  
pp. 1242-1245
Author(s):  
Yu Long Fang ◽  
Jia Yun Yin ◽  
Zhi Hong Feng

The influence of the strain of AlN buffer layers on the strain evolution of GaN epilayers grown on 3-in 6H-SiC substrates by metal-organic chemical vapor deposition was investigated by double-crystal X-ray diffractometry, and Raman scattering spectra. It was found that the tensile strain of the GaN epilayers mainly decreases with the strain of the AlN buffer layers varied from tensile to compressive. A model based on the strain evolution during the epitaxial growth is proposed to provide a valuable reference for the massive production of large scale and high quality GaN epilayers.


2021 ◽  
Vol 6 (1) ◽  
pp. 24
Author(s):  
Silvana Gjyli ◽  
Arjan Korpa ◽  
Valdet Teneqja ◽  
Dritan Siliqi ◽  
Claudia Belviso

Fly ash is a coal combustion product partly disposed of in landfills since it finds no other application. Recycling this solid is of great benefit in terms of quality, cost effectiveness and the environment. The chemical and mineralogical composition of siliceous fly ash makes it an attractive and economic raw material for the synthesis of zeolites. Zeolites are microporous, aluminosilicate minerals characterized by a three-dimensional network of tetrahedral units produced industrially on a large scale. In this work, synthetic X and A-type zeolite with high crystallinity and high value of surface area were synthesized by a pre-fusion method followed by a hydrothermal treatment under various conditions. The data indicate that zeolitic products were obtained using NaOH while no zeolitic material was crystallized using KOH and LiOH. Pre-treatment of fly ash with acid before being used in the synthesis of artificial zeolites is considered an important parameter for the purity phase of zeolites. Without sodium aluminate additions, synthetic zeolite A was not formed. The results confirm that temperature, crystallization time, SiO2/Al2O3 ratio and type of water (distilled water and seawater) are also important parameters influencing type of zeolite synthesized. Zeolite X was used as a novel catalyst for the alkylation of phenol using diethyl carbonate.


Author(s):  
Jason R. Heffelfinger ◽  
C. Barry Carter

Yttria-stabilized zirconia (YSZ) is currently used in a variety of applications including oxygen sensors, fuel cells, coatings for semiconductor lasers, and buffer layers for high-temperature superconducting films. Thin films of YSZ have been grown by metal-organic chemical vapor deposition, electrochemical vapor deposition, pulse-laser deposition (PLD), electron-beam evaporation, and sputtering. In this investigation, PLD was used to grow thin films of YSZ on (100) MgO substrates. This system proves to be an interesting example of relationships between interfaces and extrinsic dislocations in thin films of YSZ.In this experiment, a freshly cleaved (100) MgO substrate surface was prepared for deposition by cleaving a lmm-thick slice from a single-crystal MgO cube. The YSZ target material which contained 10mol% yttria was prepared from powders and sintered to 85% of theoretical density. The laser system used for the depositions was a Lambda Physik 210i excimer laser operating with KrF (λ=248nm, 1Hz repetition rate, average energy per pulse of 100mJ).


Author(s):  
J. Allègre ◽  
P. Lefebvre ◽  
J. Camassel ◽  
B. Beaumont ◽  
Pierre Gibart

Time-resolved photoluminescence spectra have been recorded on three GaN epitaxial layers of thickness 2.5 μm, 7 μm and 16 μm, at various temperatures ranging from 8K to 300K. The layers were deposited by MOVPE on (0001) sapphire substrates with standard AlN buffer layers. To achieve good homogeneities, the growth was in-situ monitored by laser reflectometry. All GaN layers showed sharp excitonic peaks in cw PL and three excitonic contributions were seen by reflectivity. The recombination dynamics of excitons depends strongly upon the layer thickness. For the thinnest layer, exponential decays with τ ~ 35 ps have been measured for both XA and XB free excitons. For the thickest layer, the decay becomes biexponential with τ1 ~ 80 ps and τ2 ~ 250 ps. These values are preserved up to room temperature. By solving coupled rate equations in a four-level model, this evolution is interpreted in terms of the reduction of density of both shallow impurities and deep traps, versus layer thickness, roughly following a L−1 law.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 566 ◽  
Author(s):  
M. Akhtar ◽  
Ahmad Umar ◽  
Swati Sood ◽  
InSung Jung ◽  
H. Hegazy ◽  
...  

This paper reports the rapid synthesis, characterization, and photovoltaic and sensing applications of TiO2 nanoflowers prepared by a facile low-temperature solution process. The morphological characterizations clearly reveal the high-density growth of a three-dimensional flower-shaped structure composed of small petal-like rods. The detailed properties confirmed that the synthesized nanoflowers exhibited high crystallinity with anatase phase and possessed an energy bandgap of 3.2 eV. The synthesized TiO2 nanoflowers were utilized as photo-anode and electron-mediating materials to fabricate dye-sensitized solar cell (DSSC) and liquid nitroaniline sensor applications. The fabricated DSSC demonstrated a moderate conversion efficiency of ~3.64% with a maximum incident photon to current efficiency (IPCE) of ~41% at 540 nm. The fabricated liquid nitroaniline sensor demonstrated a good sensitivity of ~268.9 μA mM−1 cm−2 with a low detection limit of 1.05 mM in a short response time of 10 s.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042098705
Author(s):  
Xinran Wang ◽  
Yangli Zhu ◽  
Wen Li ◽  
Dongxu Hu ◽  
Xuehui Zhang ◽  
...  

This paper focuses on the effects of the off-design operation of CAES on the dynamic characteristics of the triple-gear-rotor system. A finite element model of the system is set up with unbalanced excitations, torque load excitations, and backlash which lead to variations of tooth contact status. An experiment is carried out to verify the accuracy of the mathematical model. The results show that when the system is subjected to large-scale torque load lifting at a high rotating speed, it has two stages of relatively strong periodicity when the torque load is light, and of chaotic when the torque load is heavy, with the transition between the two states being relatively quick and violent. The analysis of the three-dimensional acceleration spectrum and the meshing force shows that the variation in the meshing state and the fluctuation of the meshing force is the basic reasons for the variation in the system response with the torque load. In addition, the three rotors in the triple-gear-rotor system studied show a strong similarity in the meshing states and meshing force fluctuations, which result in the similarity in the dynamic responses of the three rotors.


Sign in / Sign up

Export Citation Format

Share Document