Oxidation resistance properties of refractory high-entropy alloys with varied AlxCrTiMo content

2020 ◽  
Vol 56 (4) ◽  
pp. 3551-3561
Author(s):  
Ruiyang Zhang ◽  
Junhu Meng ◽  
Jiesheng Han ◽  
Kelimu Tulugan ◽  
Rui Zhang
2019 ◽  
Vol 359 ◽  
pp. 132-140 ◽  
Author(s):  
Fa Chang ◽  
Bingjie Cai ◽  
Chong Zhang ◽  
Biao Huang ◽  
Shuai Li ◽  
...  

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Shuaidan Lu ◽  
Xiaoxiao Li ◽  
Xiaoyu Liang ◽  
Wei Yang ◽  
Jian Chen

Alloying with V and Ti elements effectively improves the strength of WMoTaNb refractory high entropy alloys (RHEAs) at elevated temperatures. However, their effects on the oxidation resistance of WMoTaNb RHEAs are unknown, which is vitally important to their application at high temperatures. In this work, the effect of V and Ti on the oxidation behavior of WMoTaNb RHEA at 1000 °C was investigated using a thermogravimetric system, X-ray diffraction and scanning electron microscopy. The oxidation of all alloys was found to obey a power law passivating oxidation at the early stage. The addition of V aggravates the volatility of V2O5, MoO3 and WO3, and leads to disastrous internal oxidation. The addition of Ti reduces the mass gain in forming the full coverage of passivating scale and prolongs the passivation duration of alloys.


2018 ◽  
Vol 103 ◽  
pp. 40-51 ◽  
Author(s):  
Saad Sheikh ◽  
Lu Gan ◽  
Te-Kang Tsao ◽  
Hideyuki Murakami ◽  
Samrand Shafeie ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3120 ◽  
Author(s):  
Zifu Li ◽  
Panos Tsakiropoulos

In this paper, we report research about the isothermal oxidation in air at 800 and 1200 °C for 100 h of the as-cast alloys (at.%) Nb-18Si-5Ge (ZF1), Nb-18Si-10Ge (ZF2), Nb-24Ti-18Si-5Ge (ZF3), Nb-24Ti-18Si-5Cr (ZF4), Nb-24Ti-18Si-5Al (ZF5), Nb-24Ti-18Si-5Al-5Cr-5Ge (ZF6), and Nb-24Ti-18Si-5Al-5Cr-5Ge-5Hf (ZF9), the microstructures of which were reported in previous publications. Only the alloys ZF1, ZF2, and ZF3 suffered from pest oxidation at 800 °C. The Ge addition substantially improved the oxidation resistance of the other alloys both at 800 °C and 1200 °C, which followed parabolic kinetics at 800 °C and in the early stages at 1200 °C and linear kinetics at longer times, where there was spallation of the scales. The Nb2O5 and TiNb2O7 oxides were formed in the scales of the alloys ZF4, ZF5, ZF6, and ZF9 at 800 °C and 1200 °C, the GeO2 was observed in all scales and the SiO2 in the scales of the alloys ZF4 and ZF5, the CrNbO4 in the scales of the alloys ZF4, ZF6, and ZF9 and the AlNbO4 in the scales of the alloys ZF5, ZF6, and ZF9. Diffusion zones were formed below the scale/substrate interface only in the alloys ZF4 and ZF5 where the Nbss and Nb5Si3 were contaminated by oxygen. However, these phases were not contaminated by oxygen in the bulk of the alloys ZF4, ZF5, ZF6, and ZF9. The alloys ZF9 and ZF6 exhibited the best oxidation behaviour at 800 °C and 1200 °C, respectively. The alloys were compared with Nb-silicide based alloys of similar compositions without Ge and Hf additions and the alloy ZF9 with refractory metal High Entropy Alloys. Compared with the former alloys, the addition of Ge reduced the vol % of the Nbss. Compared with the latter alloys, the superior oxidation behaviour of the alloy ZF9 was attributed to its higher and lower values respectively of the parameters δ and VEC.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 612
Author(s):  
Muthe Srikanth ◽  
A. Raja Annamalai ◽  
A. Muthuchamy ◽  
Chun-Ping Jen

This review paper provides insight into current developments in refractory high-entropy alloys (RHEAs) based on previous and currently available literature. High-temperature strength, high-temperature oxidation resistance, and corrosion resistance properties make RHEAs unique and stand out from other materials. RHEAs mainly contain refractory elements like W, Ta, Mo, Zr, Hf, V, and Nb (each in the 5–35 at% range), and some low melting elements like Al and Cr at less than 5 at%, which were already developed and in use for the past two decades. These alloys show promise in replacing Ni-based superalloys. In this paper, various manufacturing processes like casting, powder metallurgy, metal forming, thin-film, and coating, as well as the effect of different alloying elements on the microstructure, phase formation, mechanical properties and strengthening mechanism, oxidation resistance, and corrosion resistance, of RHEAs are reviewed.


2021 ◽  
pp. 162733
Author(s):  
Ahmad Ostovari Moghaddam ◽  
Mikhail Sudarikov ◽  
Nataliya Shaburova ◽  
Dmitry Zherebtsov ◽  
Vladimir Zhivulin ◽  
...  

2019 ◽  
Vol 28 (7) ◽  
pp. 4163-4170 ◽  
Author(s):  
Richard Gawel ◽  
Łukasz Rogal ◽  
Kazimierz Przybylski

Sign in / Sign up

Export Citation Format

Share Document