Effect of different types of silver and epoxy systems on the properties of silver/epoxy conductive adhesives

2010 ◽  
Vol 22 (7) ◽  
pp. 757-764 ◽  
Author(s):  
S. Khairul Anuar ◽  
M. Mariatti ◽  
A. Azizan ◽  
N. Chee Mang ◽  
W. T. Tham
MRS Bulletin ◽  
2003 ◽  
Vol 28 (6) ◽  
pp. 449-454 ◽  
Author(s):  
C. T. Murray ◽  
R. L. Rudman ◽  
M. B. Sabade ◽  
A. V. Pocius

AbstractA number of different types of adhesives are used in the assembly of electronic components and devices. This article provides an overview of such adhesives that also have another job–they work at conducting electricity or heat. The resins or binders in these adhesives range from thermosetting to pressure-sensitive. Conductivity is obtained by the judicious choice of filler. For electrically conducting adhesives, the fillers range from silver flake to silver-coated fibers. For thermally conducting adhesives, the fillers range from aluminum oxide to boron nitride. We also discuss a specific type of electrically conducting adhesive–the z-axis film adhesive. In these adhesives, particles are oriented in such a fashion that allows conduction in the direction perpendicular to the adhesive, but not in the plane of the adhesive.


2013 ◽  
Vol 669 ◽  
pp. 171-175
Author(s):  
Xin Ding ◽  
Hua Wang ◽  
Xing You Tian ◽  
Kang Zheng

The conductive adhesives were prepared by using micron silver, ball-milled silver and the mixture of them as conductive fillers, respectively, and epoxy resin as matrix. In this study, The relationship between the resistivity with the content of silver fillers was tested. With the micron sliver loading from 60 wt% to 75 wt%, the resistivity decreases significantly about 8 orders of magnitude. And the effects of the different types of silver fillers (micron silver, ball-milled silver and the mixture of them) on the resistivity were also investigated. The study shows that the ECAs filled with the micron sliver gets the highest resistivity and the resistivity of ECAs which uses the ball-milled sliver as fillers is the lowest.


2012 ◽  
Vol 14 (3) ◽  
pp. 227 ◽  
Author(s):  
J. Dyana Merline ◽  
C.P. Reghunadhan Nair

Elastic memory composites were processed from shape memory epoxy resins and carbon fabric reinforcements. Three different types of epoxies (diglycidyl ether of bisphenol-A, tris(4-glycidyloxy phenyl)methane, and epoxy novolac) were used as matrices. Developed composites were evaluated for flexural strength and analyzed by Dynamic Mechanical Thermal analysis. Of the three different epoxy systems with carbon: resin ratio of 50:50, the composite with diepoxy system exhibited maximum glass transition value of 119 °C, epoxy novalac system exhibited a low glass transition value of 54 °C and the tris epoxy system exhibited a glass transition of 100 °C respectively. The flexural strength and modulus of the composites were optimised at a concentration of 40 wt.%. The transition temperature also showed a maximum at around this composition. Bending test was adopted for the shape memory evaluation. All the developed composites exhibited more than 90% shape recovery. The diepoxy resin series of composites exhibited the maximum shape recovery of 97%. The shape recovery properties of the tris epoxy and epoxy novolac-based composites were inferior. For the diepoxy resin-based system, the shape recovery time was proportional to the resin content. The shape recovery of composite with 80% resin was demonstrated experimentally. The properties of the composites show that these systems have the required elastic memory characteristics for possible use in thermo-responsive self-deployable applications.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


2020 ◽  
Vol 43 ◽  
Author(s):  
Rajen A. Anderson ◽  
Benjamin C. Ruisch ◽  
David A. Pizarro

Abstract We argue that Tomasello's account overlooks important psychological distinctions between how humans judge different types of moral obligations, such as prescriptive obligations (i.e., what one should do) and proscriptive obligations (i.e., what one should not do). Specifically, evaluating these different types of obligations rests on different psychological inputs and has distinct downstream consequences for judgments of moral character.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


Author(s):  
E. L. Thomas ◽  
S. L. Sass

In polyethylene single crystals pairs of black and white lines spaced 700-3,000Å apart, parallel to the [100] and [010] directions, have been identified as microsector boundaries. A microsector is formed when the plane of chain folding changes over a small distance within a polymer crystal. In order for the different types of folds to accommodate at the boundary between the 2 fold domains, a staggering along the chain direction and a rotation of the chains in the plane of the boundary occurs. The black-white contrast from a microsector boundary can be explained in terms of these chain rotations. We demonstrate that microsectors can terminate within the crystal and interpret the observed terminal strain contrast in terms of a screw dislocation dipole model.


Sign in / Sign up

Export Citation Format

Share Document