Effect of hydrogenated silicon film microstructure on the surface states of n-type silicon nanowires and solar cells

Author(s):  
Ping Yang ◽  
Xiangbo Zeng
2003 ◽  
Vol 762 ◽  
Author(s):  
Guozhen Yuea ◽  
Baojie Yan ◽  
Jeffrey Yang ◽  
Kenneth Lord ◽  
Subhendu Guha

AbstractWe have observed a significant light-induced increase in the open-circuit voltage (Voc) of mixed-phase hydrogenated silicon solar cells. In this study, we investigate the kinetics of the light-induced effects. The results show that the cells with different initial Voc have different kinetic behavior. For the cells with a low initial Voc (less than 0.8 V), the increase in Voc is slow and does not saturate for light-soaking time of up to 16 hours. For the cells with medium initial Voc (0.8 ∼ 0.95 V), the Voc increases rapidly and then saturates. Cells with high initial Voc (0.95 ∼ 0.98 V) show an initial increase in Voc, followed bya Voc decrease. All light-soaked cells exhibit a degradation in fill factor. The temperature dependence of the kinetics shows that light soaking at high temperatures causes Voc increase to saturate faster than at low temperatures. The observed results can be explained by our recently proposed two-diode equivalent-circuit model for mixed-phase solar cells.


RSC Advances ◽  
2019 ◽  
Vol 9 (69) ◽  
pp. 40292-40300
Author(s):  
Anantharaj Gopalraman ◽  
Subbian Karuppuchamy ◽  
Saranyan Vijayaraghavan

VOC–JSC trade off is eliminated. Newly created surface states by OA in TiO2 facilitated the charge transfer kinetics.


2006 ◽  
Vol 20 (27) ◽  
pp. 1739-1747 ◽  
Author(s):  
QINGSONG LEI ◽  
ZHIMENG WU ◽  
XINHUA GENG ◽  
YING ZHAO ◽  
JIANPING XI

Hydrogenated silicon thin films (Si:H) have been deposited by using very high-frequency plasma-enhanced chemical vapor deposition (VHF PECVD). The structural, electrical and optical properties of the films were characterized. The transition process and the effect of pressure were studied. Results suggest that a narrow region, in which the transition from microcrystalline to amorphous growth takes place, exists in the regime of silane concentration (SC). This region is influenced by the working pressure (P). At lower pressure, the transition region is shifted to higher SC. Microcrystalline silicon (μ c-Si:H ) thin films deposited near transition region was applied as i-layer to the p-i-n solar cells. An efficiency of about 5.30% was obtained.


2011 ◽  
Vol 8 ◽  
pp. 487-492 ◽  
Author(s):  
F. Book ◽  
T. Wiedenmann ◽  
G. Schubert ◽  
H. Plagwitz ◽  
G. Hahn

Sign in / Sign up

Export Citation Format

Share Document