scholarly journals Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications

2010 ◽  
Vol 21 (7) ◽  
pp. 2227-2236 ◽  
Author(s):  
Duygu Altiok ◽  
Evren Altiok ◽  
Funda Tihminlioglu
2021 ◽  
Vol 11 (6-S) ◽  
pp. 53-69
Author(s):  
Bipin Lade ◽  
Akash Kamdi ◽  
Arti Shanware

In the present study, an attempt has been made to build and evaluate Chitosan+Glycerol/Gallic acid/Thymol-silver nanoparticles or chitosan blended (C+G/GA/T-SNPs) film to significantly improve antioxidant and antibacterial activity for accelerated wound healing. Methanolic Gallic acid is used for the first time in antibacterial chitosan control (C+G) films. All developed films, compounds was Thymol and Gallic acid and their synthesized Thymol silver nanoparticles (T-SNPs) and Gallic acid silver nanoparticles (GA-SNPs) were characterized by Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), X-Ray diffraction (XRD), Zeta potential (ZP), Dynamic light scattering (DLS), and UV-Vis spectroscopy. T-SNPs and GA-SNPs are rod and spherical in shape and were sufficient to reduce, capped, and stabilize. T-SNPs and GA-SNPs were measured Dynamic Light scattering and found to be 123.2 nm and 121.1 nm with surface charges of -19.7 and -20.3 respectively. The incorporation of methanolic Gallic acid and T-SNPs into chitosan films, as predicted, effectively enhanced antioxidant and antimicrobial activity. The antimicrobial activity of Thymol, T-SNPs and C+G/GA/T-SNPs film showed more zone of inhibition than Gallic acid, GA-SNPs and C+G film. The elasticity, texture and folding endurance of the C+G film and C+G/GA/T-SNPs films have been substantially improved. The ecological quality of the generated C+G and C+G/GA/T-SNPs film was determined by the assessment of soil degradation and water degradation parameters. These findings lead to the conclusion that the C+G/GA/T-SNPs film produced with Gallic acid and T-SNPs can improve wound healing. Keywords: Chitosan, Gallic Acid, Thymol Silver Nanoparticles, Antibacterial and Antioxidant Properties.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Jianhua Zhang ◽  
Junfei Hu ◽  
Baoshu Chen ◽  
Tianbao Zhao ◽  
Zhipeng Gu

Abstract Wound healing dressing is increasingly needed in clinical owing to the large quantity of skin damage annually. Excessive reactive oxygen species (ROS) produced through internal or external environmental influences can lead to lipid peroxidation, protein denaturation, and even DNA damage, and ultimately have harmful effects on cells. Aiming to sufficiently contact with the wound microenvironment and scavenge ROS, superabsorbent poly (acrylic acid) and antioxidant poly (ester amide) (PAA/PEA) hybrid hydrogel has been developed to enhance wound healing. The physical and chemical properties of hybrid hydrogels were studied by Fourier-transform infrared (FTIR) absorption spectrum, compression, swelling, degradation, etc. Besides, the antioxidant properties of hybrid hydrogels can be investigated through the free radical scavenging experiment, and corresponding antioxidant indicators have been tested at the cellular level. Hybrid hydrogel scaffolds supported the proliferation of human umbilical vein endothelial cells and fibroblasts, as well as accelerated angiogenesis and skin regeneration in wounds. The healing properties of wounds in vivo were further assessed on mouse skin wounds. Results showed that PAA/PEA hybrid hydrogel scaffolds significantly accelerated the wound healing process through enhancing granulation formation and re-epithelialization. In summary, these superabsorbent and antioxidative hybrid hydrogels could be served as an excellent wound dressing for full-thickness wound healing.


2015 ◽  
Vol 126 ◽  
pp. 50-57 ◽  
Author(s):  
İpek Eroğlu ◽  
Evren H. Gökçe ◽  
Nicolas Tsapis ◽  
Sakine Tuncay Tanrıverdi ◽  
Göksel Gökçe ◽  
...  

2022 ◽  
Vol 31 ◽  
pp. 100792
Author(s):  
Wei Zhang ◽  
Qixing Jiang ◽  
Jiandong Shen ◽  
Pei Gao ◽  
Dawei Yu ◽  
...  

2019 ◽  
Vol 20 (16) ◽  
pp. 3856 ◽  
Author(s):  
Paul Hiebert ◽  
Sabine Werner

The nuclear factor-erythroid 2-related factor 2 (NRF2) transcription factor plays a central role in mediating the cellular stress response. Due to their antioxidant properties, compounds activating NRF2 have received much attention as potential medications for disease prevention, or even for therapy. Accumulating evidence suggests that activation of the NRF2 pathway also has a major impact on wound healing and may be beneficial in the treatment of chronic wounds, which remain a considerable health and economic burden. While NRF2 activation indeed shows promise, important considerations need to be made in light of corresponding evidence that also points towards pro-tumorigenic effects of NRF2. In this review, we discuss the evidence to date, highlighting recent advances using gain- and loss-of-function animal models and how these data fit with observations in humans.


2017 ◽  
Vol 47 ◽  
pp. 236-245 ◽  
Author(s):  
Murat Kaya ◽  
Lalehan Akyuz ◽  
Idris Sargin ◽  
Muhammad Mujtaba ◽  
Asier M. Salaberria ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2286 ◽  
Author(s):  
Sibusiso Alven ◽  
Xhamla Nqoro ◽  
Blessing Atim Aderibigbe

Some of the currently used wound dressings have interesting features such as excellent porosity, good water-absorbing capacity, moderate water vapor transmission rate, high drug loading efficiency, and good capability to provide a moist environment, but they are limited in terms of antimicrobial properties. Their inability to protect the wound from microbial invasion results in wound exposure to microbial infections, resulting in a delayed wound healing process. Furthermore, some wound dressings are loaded with synthetic antibiotics that can cause adverse side effects on the patients. Natural-based compounds exhibit unique features such as good biocompatibility, reduced toxicity, etc. Curcumin, one such natural-based compound, has demonstrated several biological activities such as anticancer, antibacterial and antioxidant properties. Its good antibacterial and antioxidant activity make it beneficial for the treatment of wounds. Several researchers have developed different types of polymer-based wound dressings which were loaded with curcumin. These wound dressings displayed excellent features such as good biocompatibility, induction of skin regeneration, accelerated wound healing processes and excellent antioxidant and antibacterial activity. This review will be focused on the in vitro and in vivo therapeutic outcomes of wound dressings loaded with curcumin.


Sign in / Sign up

Export Citation Format

Share Document