Phytoplankton response to climate changes in Lake Baikal during the Holocene and Kazantsevo Interglacials assessed from sedimentary pigments

2006 ◽  
Vol 37 (2) ◽  
pp. 177-203 ◽  
Author(s):  
Susanne Fietz ◽  
Andreas Nicklisch ◽  
Hedi Oberhänsli
2021 ◽  
Author(s):  
Johannes Schmidt ◽  
Cathleen Kertscher ◽  
Markus Reichert ◽  
Helen Ballasus ◽  
Birgit Schneider ◽  
...  

<p>The Western Mediterranean region including the North African desert margin is considered one of the most sensitive areas to future climate changes. In order to refine long-term scenarios for hydrological and environmental responses to future climate changes in this region, it is important to improve our knowledge about past environmental responses to climatic variability at centennial to millennial timescales. During the last two decades, the recovery and compilation of Holocene records from the subtropical North Atlantic and the Mediterranean Sea have improved our knowledge about millennial-scale variability of the Western Mediterranean palaeoclimate. The variabilities appear to affect regional precipitation patterns and environmental systems in the Western Mediterranean, but the timescales, magnitudes and forcing mechanisms remain poorly known. To compare the changes in Holocene climate variability and geomorphological processes across temporal scales, we analysed a 19.63-m long sediment record from Lake Sidi Ali (33°03’ N, 5°00’ W, 2080 m a.s.l.) in the sub-humid Middle Atlas that spans the last 12,000 years (23 pollen-based radiocarbon dates accompanied with <sup>210</sup>Pb results). We use calibrated XRF core scanning records with an annual to sub-decadal resolution to disentangle the complex interplay between climate changes and environmental dynamics during the Holocene. Data exploration techniques and time series analysis (Redfit, Wavelet) revealed long-term changes in lake behaviour. Three main proxy groups were identified (temperature proxies: 2ky, 1ky and 0.7ky cycles; sediment dynamic proxies: 3.5ky, 1.5ky cycles; hydrological proxies: 1.5ky, 1.2ky, 0.17ky cycles). For example, redox sensitive elements Fe and Mn show 1ky cycles and higher values in the Early Holocene and 1.5ky cycles and lower values in the Mid- to Late Holocene. All groups show specific periodicities throughout the Holocene, demonstrating their particular climatic and geomorphological dependencies. Furthermore, we discuss these periodicities relating to global and hemispheric drivers, such as the North Atlantic Oscillation (NAO), El-Niño Southern Oscillation (ENSO), Innertropical Convergence Zone variability (ITCZ) and North Atlantic cold relapses (Bond events).</p>


Radiocarbon ◽  
2002 ◽  
Vol 44 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Lyubov A Orlova ◽  
Valentina S Zykina

We have constructed a detailed chronological description of soil formation and its environments with data obtained on radiocarbon ages, palynology, and pedology of the Holocene buried soils in the forest steppe of western and central Siberia. We studied a number of Holocene sections, which were located in different geomorphic situations. Radiocarbon dating of materials from several soil horizons, including soil organic matter (SOM), wood, peat, charcoal, and carbonates, revealed three climatic periods and five stages of soil formation in the second part of the Holocene. 14C ages of approximately 6355 BP, 6020 BP, and 5930 BP showed that the longest and most active stage is associated with the Holocene Climatic Optimum, when dark-grey soils were formed in the forest environment. The conditions of birch forest steppe favored formation of chernozem and associated meadow-chernozem and meadow soils. Subboreal time includes two stages of soil formation corresponding to lake regressions, which were less intense than those of the Holocene Optimum. The soils of that time are chernozem, grassland-chernozem, and saline types, interbedded with thin peat layers 14C dated to around 4555 B P, 4240 BP and 3480 BP, and 3170 B P. Subatlantic time includes two poorly developed hydromorphic paleosols formed within inshore parts of lakes and chernozem-type automorphic paleosol. The older horizon was formed during approximately 2500–1770 BP, and the younger one during approximately 1640–400 B P. The buried soils of the Subatlantic time period also attest to short episodes of lake regression. The climate changes show an evident trend: in the second part of the Atlantic time period it was warmer and drier than at present, and in the Subboreal and Subatlantic time periods the climate was cool and humid.


2020 ◽  
Vol 490 (1) ◽  
pp. 23-27 ◽  
Author(s):  
I. I. Mokhov ◽  
A. V. Eliseev ◽  
V. V. Guryanov

2020 ◽  
Vol 232 ◽  
pp. 02002
Author(s):  
Walter Kutschera ◽  
Gernot Patzelt ◽  
Joerg M. Schaefer ◽  
Christian Schlüchter ◽  
Peter Steier ◽  
...  

A brief review of the movements of Alpine glaciers throughout the Holocene in the Northern Hemisphere (European Alps) and in the Southern Hemisphere (New Zealand Southern Alps) is presented. It is mainly based on glacier studies where 14C dating, dendrochronology and surface exposure dating with cosmogenic isotopes is used to establish the chronology of advances and retreats of glaciers. An attempt is made to draw some general conclusions on the temperature and climate differences between the Northern and Southern Hemisphere.


2006 ◽  
Vol 65 (3) ◽  
pp. 411-420 ◽  
Author(s):  
Wenying Jiang ◽  
Zhengtang Guo ◽  
Xiangjun Sun ◽  
Haibin Wu ◽  
Guoqiang Chu ◽  
...  

AbstractA high-resolution pollen and Pediastrum record, spanning 12,500 yr, is presented for Lake Bayanchagan , southern Inner Mongolia. Individual pollen taxa (PT-MAT) and the PFT affinity scores (PFT-MAT) were used for quantitative climatic reconstruction from pollen and algal data. Both techniques indicate that a cold and dry climate, similar to that of today, prevailed before 10,500 cal yr B.P. The wettest climate occurred between ∼10,500 and 6500 cal yr B.P., at which time annual precipitation was up to 30–60% higher than today. The early Holocene increases in temperature and precipitation occurred simultaneously, but mid-Holocene cooling started at approximately 8000 cal yr B.P., 1500 yr earlier than the drying. Vegetation reconstruction was based on the objective assignment of pollen taxa to the plant functional type. The results suggest that this region was dominated by steppe vegetation throughout the Holocene, except for the period ∼9200 to ∼6700 cal yr B.P., when forest patches were relatively common. Inner Mongolia is situated at the limit of the present East Asian monsoon and patterns of vegetation and climate changes in that region during the Holocene probably reflect fluctuations in the monsoon's response to solar insolation variations. The early to middle Holocene monsoon undoubtedly extended to more northern latitudes than at present.


2006 ◽  
Vol 411 (1) ◽  
pp. 1331-1335 ◽  
Author(s):  
E. V. Bezrukova ◽  
A. V. Belov ◽  
A. A. Abzaeva ◽  
P. P. Letunova ◽  
L. A. Orlova ◽  
...  

2014 ◽  
Vol 305 ◽  
pp. 35-53 ◽  
Author(s):  
Anne-Sophie Fanget ◽  
Serge Berné ◽  
Gwénaël Jouet ◽  
Maria-Angela Bassetti ◽  
Bernard Dennielou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document