Thermogravimetric analysis and differential scanning calorimetry for investigating the stability of yellow smoke powders

2016 ◽  
Vol 128 (1) ◽  
pp. 387-398 ◽  
Author(s):  
Adam Tabacof ◽  
Verônica Maria de Araújo Calado
2019 ◽  
Author(s):  
Andreas Boelke ◽  
Yulia A. Vlasenko ◽  
Mekhman S. Yusubov ◽  
Boris Nachtsheim ◽  
Pavel Postnikov

<p>The thermal stability of pseudocyclic and cyclic <i>N</i>-heterocycle-stabilized (hydroxy)aryl- and mesityl(aryl)-l<sup>3</sup>-iodanes (NHIs) through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is investigated. NHIs bearing <i>N</i>-heterocycles with a high N/C-ratio such as triazoles show among the lowest descomposition temperatures and the highest decomposition energies. A comparison of NHIs with known (pseudo)cyclic benziodoxolones is made and we further correlated their thermal stability with reactivity in a model oxygenation. </p>


2021 ◽  
Vol 287 ◽  
pp. 02014
Author(s):  
Amin Abbasi ◽  
Mohamed Mahmoud Nasef ◽  
Wan Zaireen Nisa Yahya ◽  
Muhammad Moniruzzaman

The conversion of palm oil into a sulfur-based polymer by copolymerization with sulfur powder at its molten state is herein reported. The obtained sulfur-containing polymer was characterized using Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to demonstrate the successful conversion. The disappearance of the peaks related to vinylic groups of oil together with the appearance of a peak representing C-H rocking vibrations in the vicinity of C-S bonds confirmed the copolymerization of sulfur with oil. TGA revealed that the polymers have thermal stability up to 230°C under nitrogen and the polymers leave 10% sulfur-rich ash. DSC proved that a small amount of elemental sulfur remained unreacted in the polymer, which showed amorphous and heavily crosslinked structure resembling thermosets. These copolymers are an environmental-friendly polymeric material promoting the utilization of the abundant sulfur while also adding value to palm oil.


2002 ◽  
Vol 80 (11) ◽  
pp. 1469-1480 ◽  
Author(s):  
Karena Thieme ◽  
Sara C Bourke ◽  
Juan Zheng ◽  
Mark J MacLachlan ◽  
Fojan Zamanian ◽  
...  

The novel zirconatetraferrocenylcyclotrisiloxane Cp2Zr(OSiFc2)2O (6), dizirconatetraferrocenylcyclotetrasiloxane [Cp2Zr(OSiFc2)O]2 (7), boratetraferrocenylcyclotrisiloxane (C6H5)B(OSiFc2)2O (8), and diboratetraferrocenylcyclotetrasiloxane [(C6H5)B(OSiFc2)O]2 (9) with ferrocenyl (Fc = Fe(η-C5H4)(η-C5H5)) substituents at silicon have been prepared from the reactions of Cp2Zr(NMe2)2 and PhBCl2 with diferrocenylsilanediol Fc2Si(OH)2 (3) and tetraferrocenyldisiloxanediol [Fc2SiOH]2O (5). The compounds were characterized by mass spectrometry, elemental analysis, UV–vis, IR, Raman, and multinuclear NMR spectroscopy, as well as single crystal X-ray diffraction. Thermogravimetric analysis and differential scanning calorimetry investigation of 6–9 showed that the cycles decompose before they can undergo any thermal ring-opening polymerization. In addition, no polymerization was detected in the presence of either KOSiMe3 or HOTf. The bulky ferrocenyl substituents on the Si atoms are likely to be at least partially responsible for the inability of these heterocycles to undergo ring-opening polymerization. Key words: heterocyclosiloxanes, ferrocenyl.


2020 ◽  
Vol 20 (8) ◽  
pp. 4657-4660
Author(s):  
Kyeong Hyeon Kim ◽  
Jae Hyeok Lee ◽  
Dong-Eun Kim ◽  
Hoon-Kyu Shin ◽  
Burm-Jong Lee

An isomeric series of phosphine oxides with N-phenyl benzimidazole such as 2-DPPI, 3-DPPI and 4-DPPI were synthesized for organic light emitting diodes (OLED). The thermal properties of DPPI isomers were determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). OLED devices using DPPI isomers as the emitting material were fabricated, which configuration was ITO/MoOx [30 nm]/NPB [500 nm]/DPPI [300 nm]/Alq3 [200 nm]/Liq[10 nm]/Al [120 nm]. The emitting colors of the devices were respectively a deep-blue (430 nm, 4-DPPI) and greenish-yellows (510–580 nm, 3-DPPI and 530 nm, 2-DPPI). In particular, the emitting color of 4-DPPI device was not changed during the alteration of applied voltages (6.5–11.5 V), and the CIE coordinate was a satisfactory deep-blue (0.161, 0.101).


2020 ◽  
Vol 4 (4) ◽  
pp. 66
Author(s):  
Jean-Aimé Mbey ◽  
Jean Mermoz Siéwé ◽  
Cyrill Joël Ngally Sabouang ◽  
Angelina Razafitianamaharavo ◽  
Sakeo Kong ◽  
...  

The present study deals with the relation between crystalline order in kaolinites and their ability to intercalate DMSO. Raw clays and kaolinite–DMSO complexes are analyzed using FTIR, XRD powder diffraction and differential scanning calorimetry and thermogravimetric analysis (DSC-TGA). The crystallinity is accessed using the Hinckley index (HI) from the raw clays’ XRD patterns and the p2 factor from their FTIR spectra. The intercalation ratio is evaluated from XRD and compared among the samples. The thermal analyses show a decrease in the dehydroxylation temperature in the DMSO–kaolinite complexes, indicating a decrease in the interlayer cohesion that may be useful to improve the delamination of kaolinite. The analysis of the coherent scattering domain size in the raw and the DMSO-intercalated samples indicates that the ordering is not affected during the DMSO intercalation. From these results, it is deduced that DMSO intercalation is favored by an increased crystallinity, as revealed by the intercalation ratio from XRD and the DSMO release during DSC-TGA analysis.


1998 ◽  
Vol 64 (7) ◽  
pp. 2357-2360 ◽  
Author(s):  
J. Michael Hess ◽  
Vladimir Tchernajenko ◽  
Claire Vieille ◽  
J. Gregory Zeikus ◽  
Robert M. Kelly

ABSTRACT The xylA gene from Thermotoga neapolitana5068 was expressed in Escherichia coli. Gel filtration chromatography showed that the recombinant enzyme was both a homodimer and a homotetramer, with the dimer being the more abundant form. The purified native enzyme, however, has been shown to be exclusively tetrameric. The two enzyme forms had comparable stabilities when they were thermoinactivated at 95°C. Differential scanning calorimetry revealed thermal transitions at 99 and 109.5°C for both forms, with an additional shoulder at 91°C for the tetramer. These results suggest that the association of the subunits into the tetrameric form may have little impact on the stability and biocatalytic properties of the enzyme.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2636
Author(s):  
Tomasz M. Majka ◽  
Oskar Bartyzel ◽  
Konstantinos N. Raftopoulos ◽  
Joanna Pagacz ◽  
Krzysztof Pielichowski

Pyrolysis of the polypropylene/montmorillonite (PP/OMMT) nanocomposites allows for recovery of the filler that can be then re–used to produce PP/pyrolyzed MMT (PMMT) nanostructured composites. In this work, we discuss the thermal properties of PP/PMMT composites investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It has been found that effect of PMMT (5 wt. % and 10 wt. %) on matrix thermal stability occurs at temperatures above 300 °C. Addition of 5 wt. % and 10 wt. % of PMMT into polypropylene system gave good stabilization effect, as confirmed by the overall stabilization effect (OSE) values, which increased by 4% and 7%, respectively, compared to the control sample (PP). Interestingly, the presence of 1 wt. % and 3 wt. % of pyrolyzed clay stabilizes the system better than the same concentrations of organoclay added into polypropylene melt. DSC data revealed that pyrolyzed clay has still the same tendency as organoclay to enhance formation of the α and β crystalline PP phases only. The pyrolyzed MMT causes an improvement of the modulus in the glassy as well as rubbery regions, as confirmed by DMA results.


Sign in / Sign up

Export Citation Format

Share Document