Application of TG/FTIR TG/MS and cone calorimetry to understand flame retardancy and catalytic charring mechanism of boron phosphate in flame-retardant PUR–PIR foams

2017 ◽  
Vol 130 (3) ◽  
pp. 1817-1827 ◽  
Author(s):  
Xiu Liu ◽  
Jing-Yu Wang ◽  
Xiao-Mei Yang ◽  
Yi-Liang Wang ◽  
Jian-Wei Hao

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1538
Author(s):  
Denghui Xu ◽  
Shijie Wang ◽  
Yimin Wang ◽  
Yun Liu ◽  
Chaohong Dong ◽  
...  

To improve the water solubility of phosphoramidate siloxane and decrease the amount of flame-retardant additives used in the functional coating for cotton fabrics, a water-soluble phosphoramidate siloxane polymer (PDTSP) was synthesized by sol-gel technology and flame-retardant cotton fabrics were prepared with a multistep coating process. A vertical flammability test, limited oxygen index (LOI), thermogravimetric analysis, and cone calorimetry were performed to investigate the thermal behavior and flame retardancy of PDTSP-coated fabrics. The coated cotton fabrics and their char residues after combustion were studied by attenuated total reflection infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). All results presented that PDTSP-coated cotton fabrics had good flame retardancy and char-forming properties. PDTSP coating was demonstrated to posess gas-phase flame-retardant mechanism as well as a condensed phase flame-retardant mechanism, which can be confirmed by thermogravimetric analysis-Fourier transform infrared spectroscopy (TG-IR) and cone calorimetry test. Also, the preparation process had little effect on the tensile strength of cotton fabrics, although the air permeability and whiteness had a slight decrease. After different washing cycles, the coated samples still maintained good char-forming properties.



Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2349
Author(s):  
Woranan Netkueakul ◽  
Beatrice Fischer ◽  
Christian Walder ◽  
Frank Nüesch ◽  
Marcel Rees ◽  
...  

The effects of combining 0.1–5 wt % graphene nanoplatelet (GNP) and 3–30 wt % phosphorous flame retardant, 9,10- dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) as fillers in epoxy polymer on the mechanical, flame retardancy, and electrical properties of the epoxy nanocomposites was investigated. GNP was homogeneously dispersed into the epoxy matrix using a solvent-free three-roll milling process, while DOPO was incorporated into the epoxy resin by mechanical stirring at elevated temperature. The incorporation of DOPO reduced the crosslinking density of the epoxy resin. When using polyetheramine as a hardener, the structural rigidity effect of DOPO overshadowed the crosslinking effect and governed the flexural moduli of epoxy/DOPO resins. The flexural moduli of the nanocomposites were improved by adding GNP up to 5 wt % and DOPO up to 30 wt %, whereas the flexural strengths deteriorated when the GNP and DOPO loading were higher than 1 wt % and 10 wt %, respectively. Limited by the adverse effects on mechanical property, the loading combinations of GNP and DOPO within the range of 0–1 wt % and 0–10 wt %, respectively, in epoxy resin were further studied. Flame retardancy index (FRI), which depended on three parameters obtained from cone calorimetry, was considered to evaluate the flame retardancy of the epoxy composites. DOPO showed better performance than GNP as the flame retardant additive, while combining DOPO and GNP could further improve FRI to some extent. With the combination of 0.5 wt % GNP and 10 wt % DOPO, improvement in both mechanical properties and flame retardant efficiency of the nanocomposite was observed. Such a combination did not affect the electrical conductivity of the nanocomposites since the percolation threshold was at 1.6 wt % GNP. Our results enhance the understanding of the structure–property relationship of additive-filled epoxy resin composites and serve as a property constraining guidance for the composite manufacturing.



2016 ◽  
Vol 87 (11) ◽  
pp. 1367-1376 ◽  
Author(s):  
Chaohong Dong ◽  
Zhou Lu ◽  
Peng Wang ◽  
Ping Zhu ◽  
Xuechao Li ◽  
...  

A novel formaldehyde-free flame retardant containing phosphorus and dichlorotriazine components (CTAP) for cotton fabrics was synthesized. As an active group, the dichlorotriazine could react with cotton fabric via covalent reaction. The addition of 20.7 wt% CTAP into the cotton fabric obtained a high limiting oxygen index value of 31.5%, which was 13.5% higher than the pure cotton fabric. The results of heat release rate, total heat release and effective heat combustion indicated that CTAP effectively imparted flame retardancy to cotton fabric by the cone calorimetry test. With respect to the untreated cotton fabrics, the treated cotton fabrics degraded at lower decomposition temperature and form a consistent and compact char layer, which could be observed by thermogravimetric analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. Compared to the untreated cotton fabrics, CTAP performed an effective role in flame retardancy for treated cotton fabrics. Meanwhile, it stimulated the formation of char and promoted the thermal stability of treated cotton fabrics during combustion.



BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 1311-1324
Author(s):  
Yating Hua ◽  
Chungui Du ◽  
Huilong Yu ◽  
Ailian Hu ◽  
Rui Peng ◽  
...  

Flame-retardant silicate-intercalated calcium aluminum hydrotalcites (CaAl-SiO3-LDHs) were synthesized to treat bamboo for retardancy, to overcome the bamboo’s flammability and reduce the production of toxic smoke during combustion. The microstructure, elemental composition, flame retardancy, and smoke suppression characteristics of the bamboo before and after the fire-retardant treatment with different pressure impregnation were studied using a scanning electron microscope (SEM), elemental analysis (EDX), and cone calorimetry. It was found that CaAl-SiO3-LDHs flame retardants can effectively fill and cover the cell wall surface and the cell cavity of bamboo without damaging the microstructure. As compared to the non-flame-retardant bamboo, the heat release rate (HRR) of the CaAl-SiO3-LDHs flame-retardant bamboo was significantly reduced, the total heat release (THR) decreased by 31.3%, the residue mass increased by 51.4%, the time to ignition (TTI) delay rate reached 77.8%, the mass loss rate (MLR) decreased, and the carbon formation improved. Additionally, as compared to the non-flame-retardant bamboo, the total smoke release (TSR) of the CaAl-SiO3-LDHs flame-retardant bamboo decreased by 38.9%, and the carbon monoxide yield (YCO) approached zero. Thus, the CaAl-SiO3-LDHs flame-retardant bamboo has excellent flame-retardancy and smoke suppression characteristics.



2020 ◽  
Vol 1003 ◽  
pp. 205-212
Author(s):  
Fu Long Zhou ◽  
Hong Zhi Wu ◽  
Ming Mei Sun ◽  
Xin Zhu ◽  
Lin Sheng Tang

A new triazine charring agent, melamine formaldehyde resin modified with pentaerythritol (named as MF-MPOL), was synthesized through hydroxymethylation, condensation and etherification by using melamine, paraformaldehyde and pentaerythritol as raw materials, and characterized by solid-state 13C NMR and FT-IR. The intumescent flame retardant (IFR) consisting of MF-MPOL with ammonium polyphosphate has good flame retardancy in polypropylene (PP). The analysis of the residues obtained in cone calorimetry test showed that the IFR played a role of flame retardancy mainly in condensed phase. In other words, the porous and dense - continuous intumescent char layer formed during the burning process results in flame retardant effect by insulation of heat, oxygen and preventing the underlying PP from degradation and volatilization of pyrolytic products.



Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1701 ◽  
Author(s):  
Farzad Seidi ◽  
Elnaz Movahedifar ◽  
Ghasem Naderi ◽  
Vahideh Akbari ◽  
Franck Ducos ◽  
...  

Polypropylene (PP) is a commodity plastic known for high rigidity and crystallinity, which is suitable for a wide range of applications. However, high flammability of PP has always been noticed by users as a constraint; therefore, a variety of additives has been examined to make PP flame-retardant. In this work, research papers on the flame retardancy of PP have been comprehensively reviewed, classified in terms of flame retardancy, and evaluated based on the universal dimensionless criterion of Flame Retardancy Index (FRI). The classification of additives of well-known families, i.e., phosphorus-based, nitrogen-based, mineral, carbon-based, bio-based, and hybrid flame retardants composed of two or more additives, was reflected in FRI mirror calculated from cone calorimetry data, whatever heat flux and sample thickness in a given series of samples. PP composites were categorized in terms of flame retardancy performance as Poor, Good, or Excellent cases. It also attempted to correlate other criteria like UL-94 and limiting oxygen index (LOI) with FRI values, giving a broad view of flame retardancy performance of PP composites. The collected data and the conclusions presented in this survey should help researchers working in the field to select the best additives among possibilities for making the PP sufficiently flame-retardant for advanced applications.



Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 430
Author(s):  
Kai Xu ◽  
Xing Tian ◽  
Ying Cao ◽  
Yaqi He ◽  
Yanzhi Xia ◽  
...  

Calcium alginate (Ca-Alg) fibers are renewable fibers obtained from the ocean with essential flame retardancy, which have recently been applied as components of flame-retardant paper. However, the application of Ca-Alg fibers is limited because of their tendency to smolder. Therefore, composites papers were fabricated by blending using flame-retardant polyamide-66 (FR-PA), with a 5 wt% content of phosphorous flame retardant, which will form molten carbon during combustion. When the FR-PA content is 30% of the composite paper, FR-PA forms a compact carbon layer on the surface of the Ca-Alg fibers during combustion, which isolates the mass/heat transfer and effectively suppresses the smoldering of Ca-Alg. This consists of a condensed flame retardant mechanism. Furthermore, the combustion and thermal degradation behavior of paper were analyzed by cone calorimetry (CONE), TG and TG-IR. Ca-Alg in the composite paper decomposed and released CO2 before ignition, which delayed the ignition time. Simultaneously, the FR-PA contained in the composite paper effectively inhibited the combustion of volatile combustibles in the gas phase. Overall, FR-PA and Ca-Alg improve the thermal stability of the composite paper in different temperature regions under air atmosphere. Ca-Alg reduces the formation of aromatic products and NH3 in the composite paper under N2 atmosphere. Ca-Alg-based paper with excellent flame retardancy was successfully prepared.



Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1829 ◽  
Author(s):  
Chaohong Dong ◽  
Ling Sun ◽  
Xingbo Ma ◽  
Zhou Lu ◽  
Pengshuang He ◽  
...  

A novel linear α, ω-di (chloro phosphoramide)-terminated polydimethylsiloxane (CPN-PDMS) was successfully synthesized and utilized as a formaldehyde-free water-repellent and flame-retardant for cotton fabrics. The flame retardancy of treated cotton fabrics was estimated by limiting oxygen index (LOI) test, vertical flammability test, and cone calorimetry test. The cotton fabrics treated with 350 g/L CPN-PDMS obtained excellent flame retardancy with an LOI value of 30.6% and the char length was only 4.3 cm. Combustion residues were studied using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analysis. Results show that CPN-PDMS can effectively enhance water repellency and fire resistance of cotton fabrics. Furthermore, the breaking strength test and the whiteness test strongly prove that the tensile strength and whiteness of the treated cotton fabrics were slightly lower than that of the pure cotton fabrics. The wash stability test showed that after 30 laundering cycles, the treated cotton fabrics still had an LOI value of 28.5% and a water-repellent effect of grade 80, indicating that CPN-PDMS was an excellent washing durability additive. In summary, these property enhancements of treated cotton fabrics were attributed to the synergistic effect of silicon-phosphorus-nitrogen elements in CPN-PDMS.



2019 ◽  
Vol 32 (4) ◽  
pp. 359-370 ◽  
Author(s):  
Weiwei Zhang ◽  
Hongjuan Wu ◽  
Weihua Meng ◽  
Jiahe Li ◽  
Yumeng Cui ◽  
...  

Nanowires, nanosheets, and microflowers of nickel ammonium phosphate (NiNH4PO4·H2O) were synthesized by a mixed solvothermal method and used to improve the flame retardancy of epoxy resin (EP). The solvent concentration and surfactant content were found to play a key role in nucleation and growth of NiNH4PO4·H2O. The structure of NiNH4PO4·H2O was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The flame retardancy, thermostability, mechanical properties, and flame retardancy mechanism of EP/NiNH4PO4·H2O composites were analyzed using the limiting oxygen index (LOI), cone calorimetry (Cone), mechanical property tests, thermogravimetric analysis, and thermogravimetric–Fourier transform infrared spectroscopy. The results indicated that NiNH4PO4·H2O has proper thermal stability and greatly improves the flame retardancy of EP. The nanosheets outperformed the other morphologies; the EP/5% NiNH4PO4·H2O nanosheets have an LOI of 35.2%, which exceeds that of pure EP (24.7%). Furthermore, Cone showed that these nanosheets have the lowest peak heat release rate and peak smoke production rate, which are 69.1% and 36.5% lower than those of pure EP, respectively. NiNH4PO4·H2O can promote the formation of a stable char layer and release nonflammable gases, thus protecting the matrix by preventing heat and oxygen transfer and reducing the concentration of combustible gas. NiNH4PO4·H2O is expected to serve as a new high-efficiency flame retardant for EP.



Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3964 ◽  
Author(s):  
Movahedifar ◽  
Vahabi ◽  
Saeb ◽  
Thomas

Nowadays, epoxy composites are elements of engineering materials and systems. Although they are known as versatile materials, epoxy resins suffer from high flammability. In this sense, flame retardancy analysis has been recognized as an undeniable requirement for developing future generations of epoxy-based systems. A considerable proportion of the literature on epoxy composites has been devoted to the use of phosphorus-based additives. Nevertheless, innovative flame retardants have coincidentally been under investigation to meet market requirements. This review paper attempts to give an overview of the research on flame retardant epoxy composites by classification of literature in terms of phosphorus (P), non-phosphorus (NP), and combinations of P/NP additives. A comprehensive set of data on cone calorimetry measurements applied on P-, NP-, and P/NP-incorporated epoxy systems was collected and treated. The performance of epoxy composites was qualitatively discussed as Poor, Good, and Excellent cases identified and distinguished by the use of the universal Flame Retardancy Index (FRI). Moreover, evaluations were rechecked by considering the UL-94 test data in four groups as V0, V1, V2, and nonrated (NR). The dimensionless FRI allowed for comparison between flame retardancy performances of epoxy composites. The results of this survey can pave the way for future innovations in developing flame-retardant additives for epoxy.



Sign in / Sign up

Export Citation Format

Share Document