scholarly journals Flame Retardant Polypropylenes: A Review

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1701 ◽  
Author(s):  
Farzad Seidi ◽  
Elnaz Movahedifar ◽  
Ghasem Naderi ◽  
Vahideh Akbari ◽  
Franck Ducos ◽  
...  

Polypropylene (PP) is a commodity plastic known for high rigidity and crystallinity, which is suitable for a wide range of applications. However, high flammability of PP has always been noticed by users as a constraint; therefore, a variety of additives has been examined to make PP flame-retardant. In this work, research papers on the flame retardancy of PP have been comprehensively reviewed, classified in terms of flame retardancy, and evaluated based on the universal dimensionless criterion of Flame Retardancy Index (FRI). The classification of additives of well-known families, i.e., phosphorus-based, nitrogen-based, mineral, carbon-based, bio-based, and hybrid flame retardants composed of two or more additives, was reflected in FRI mirror calculated from cone calorimetry data, whatever heat flux and sample thickness in a given series of samples. PP composites were categorized in terms of flame retardancy performance as Poor, Good, or Excellent cases. It also attempted to correlate other criteria like UL-94 and limiting oxygen index (LOI) with FRI values, giving a broad view of flame retardancy performance of PP composites. The collected data and the conclusions presented in this survey should help researchers working in the field to select the best additives among possibilities for making the PP sufficiently flame-retardant for advanced applications.

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3964 ◽  
Author(s):  
Movahedifar ◽  
Vahabi ◽  
Saeb ◽  
Thomas

Nowadays, epoxy composites are elements of engineering materials and systems. Although they are known as versatile materials, epoxy resins suffer from high flammability. In this sense, flame retardancy analysis has been recognized as an undeniable requirement for developing future generations of epoxy-based systems. A considerable proportion of the literature on epoxy composites has been devoted to the use of phosphorus-based additives. Nevertheless, innovative flame retardants have coincidentally been under investigation to meet market requirements. This review paper attempts to give an overview of the research on flame retardant epoxy composites by classification of literature in terms of phosphorus (P), non-phosphorus (NP), and combinations of P/NP additives. A comprehensive set of data on cone calorimetry measurements applied on P-, NP-, and P/NP-incorporated epoxy systems was collected and treated. The performance of epoxy composites was qualitatively discussed as Poor, Good, and Excellent cases identified and distinguished by the use of the universal Flame Retardancy Index (FRI). Moreover, evaluations were rechecked by considering the UL-94 test data in four groups as V0, V1, V2, and nonrated (NR). The dimensionless FRI allowed for comparison between flame retardancy performances of epoxy composites. The results of this survey can pave the way for future innovations in developing flame-retardant additives for epoxy.


1993 ◽  
Vol 11 (5) ◽  
pp. 442-456 ◽  
Author(s):  
Jun Zhang ◽  
Michael E. Hall ◽  
A. Richard Horrocks

This paper is the first in a series of four which investigates the burning behaviour and the influence of flame retardant species on the flam mability of fibre-forming polymer and copolymers of acrylonitrile. A pressed powdered polymer sheet technique is described that enables a range of polymer compositions in the presence and absence of flame retardants to be assessed for limiting oxygen index, burning rate and char residue deter minations. The method offers a rapid, reproducible and convenient means of screening possible flame retardant systems, and LOI values compare favourably with those of films and fabrics comprising the same polymeric type. Burning rates, however, are sensitive to changes in physical sample character such as form (film vs. powder sheet) and density. Thus the technique forms an excellent basis for the generation of burning data which will enable comprehensive studies of acrylic polymer flammability and flame retardancy to be undertaken.


2016 ◽  
Vol 87 (11) ◽  
pp. 1367-1376 ◽  
Author(s):  
Chaohong Dong ◽  
Zhou Lu ◽  
Peng Wang ◽  
Ping Zhu ◽  
Xuechao Li ◽  
...  

A novel formaldehyde-free flame retardant containing phosphorus and dichlorotriazine components (CTAP) for cotton fabrics was synthesized. As an active group, the dichlorotriazine could react with cotton fabric via covalent reaction. The addition of 20.7 wt% CTAP into the cotton fabric obtained a high limiting oxygen index value of 31.5%, which was 13.5% higher than the pure cotton fabric. The results of heat release rate, total heat release and effective heat combustion indicated that CTAP effectively imparted flame retardancy to cotton fabric by the cone calorimetry test. With respect to the untreated cotton fabrics, the treated cotton fabrics degraded at lower decomposition temperature and form a consistent and compact char layer, which could be observed by thermogravimetric analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. Compared to the untreated cotton fabrics, CTAP performed an effective role in flame retardancy for treated cotton fabrics. Meanwhile, it stimulated the formation of char and promoted the thermal stability of treated cotton fabrics during combustion.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 1311-1324
Author(s):  
Yating Hua ◽  
Chungui Du ◽  
Huilong Yu ◽  
Ailian Hu ◽  
Rui Peng ◽  
...  

Flame-retardant silicate-intercalated calcium aluminum hydrotalcites (CaAl-SiO3-LDHs) were synthesized to treat bamboo for retardancy, to overcome the bamboo’s flammability and reduce the production of toxic smoke during combustion. The microstructure, elemental composition, flame retardancy, and smoke suppression characteristics of the bamboo before and after the fire-retardant treatment with different pressure impregnation were studied using a scanning electron microscope (SEM), elemental analysis (EDX), and cone calorimetry. It was found that CaAl-SiO3-LDHs flame retardants can effectively fill and cover the cell wall surface and the cell cavity of bamboo without damaging the microstructure. As compared to the non-flame-retardant bamboo, the heat release rate (HRR) of the CaAl-SiO3-LDHs flame-retardant bamboo was significantly reduced, the total heat release (THR) decreased by 31.3%, the residue mass increased by 51.4%, the time to ignition (TTI) delay rate reached 77.8%, the mass loss rate (MLR) decreased, and the carbon formation improved. Additionally, as compared to the non-flame-retardant bamboo, the total smoke release (TSR) of the CaAl-SiO3-LDHs flame-retardant bamboo decreased by 38.9%, and the carbon monoxide yield (YCO) approached zero. Thus, the CaAl-SiO3-LDHs flame-retardant bamboo has excellent flame-retardancy and smoke suppression characteristics.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1829 ◽  
Author(s):  
Chaohong Dong ◽  
Ling Sun ◽  
Xingbo Ma ◽  
Zhou Lu ◽  
Pengshuang He ◽  
...  

A novel linear α, ω-di (chloro phosphoramide)-terminated polydimethylsiloxane (CPN-PDMS) was successfully synthesized and utilized as a formaldehyde-free water-repellent and flame-retardant for cotton fabrics. The flame retardancy of treated cotton fabrics was estimated by limiting oxygen index (LOI) test, vertical flammability test, and cone calorimetry test. The cotton fabrics treated with 350 g/L CPN-PDMS obtained excellent flame retardancy with an LOI value of 30.6% and the char length was only 4.3 cm. Combustion residues were studied using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analysis. Results show that CPN-PDMS can effectively enhance water repellency and fire resistance of cotton fabrics. Furthermore, the breaking strength test and the whiteness test strongly prove that the tensile strength and whiteness of the treated cotton fabrics were slightly lower than that of the pure cotton fabrics. The wash stability test showed that after 30 laundering cycles, the treated cotton fabrics still had an LOI value of 28.5% and a water-repellent effect of grade 80, indicating that CPN-PDMS was an excellent washing durability additive. In summary, these property enhancements of treated cotton fabrics were attributed to the synergistic effect of silicon-phosphorus-nitrogen elements in CPN-PDMS.


2019 ◽  
Vol 32 (4) ◽  
pp. 359-370 ◽  
Author(s):  
Weiwei Zhang ◽  
Hongjuan Wu ◽  
Weihua Meng ◽  
Jiahe Li ◽  
Yumeng Cui ◽  
...  

Nanowires, nanosheets, and microflowers of nickel ammonium phosphate (NiNH4PO4·H2O) were synthesized by a mixed solvothermal method and used to improve the flame retardancy of epoxy resin (EP). The solvent concentration and surfactant content were found to play a key role in nucleation and growth of NiNH4PO4·H2O. The structure of NiNH4PO4·H2O was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The flame retardancy, thermostability, mechanical properties, and flame retardancy mechanism of EP/NiNH4PO4·H2O composites were analyzed using the limiting oxygen index (LOI), cone calorimetry (Cone), mechanical property tests, thermogravimetric analysis, and thermogravimetric–Fourier transform infrared spectroscopy. The results indicated that NiNH4PO4·H2O has proper thermal stability and greatly improves the flame retardancy of EP. The nanosheets outperformed the other morphologies; the EP/5% NiNH4PO4·H2O nanosheets have an LOI of 35.2%, which exceeds that of pure EP (24.7%). Furthermore, Cone showed that these nanosheets have the lowest peak heat release rate and peak smoke production rate, which are 69.1% and 36.5% lower than those of pure EP, respectively. NiNH4PO4·H2O can promote the formation of a stable char layer and release nonflammable gases, thus protecting the matrix by preventing heat and oxygen transfer and reducing the concentration of combustible gas. NiNH4PO4·H2O is expected to serve as a new high-efficiency flame retardant for EP.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 479 ◽  
Author(s):  
Lu Fang ◽  
Xizhen Lu ◽  
Jian Zeng ◽  
Yingyi Chen ◽  
Qiheng Tang

To improve the flame-retardant performance of bamboo fiber (BF) reinforced polypropylene (PP) composites, melamine pyrophosphate (MPP) and aluminum hypophosphite (AP) at a constant mass ratio of 2:1 were added. The influence of the MPP/AP mass fraction on the mechanical and flame-retardant properties of the BF reinforced PP composites were evaluated by mechanical testing, limiting oxygen index (LOI) and cone calorimetry. Mechanical tests demonstrate that tensile properties of BF/PP decreased with the increase of MPP/AP mass fraction, while flexural properties of composites exhibited very different tendencies. Both flexural strength and modulus increased slightly with the addition of MPP/AP at first, and then decreased significantly after a relatively high content of MPP/AP was loaded. This was due to the poor interfacial compatibility between PP and MPP/AP. The flame retardancy of BF/PP composites has been greatly improved. When 30% MPP/AP was loaded into the composites, the LOI increased to 27.2%, which was 42.4% higher than that of the composite without flame retardant addition. Cone calorimetry results indicated that MPP/AP worked in both gas and condensed phases during the combustion process. Peak heat release rate, total smoke production and mass loss of the composites were significantly reduced because of the addition of MPP/AP.


2016 ◽  
Vol 28 (3) ◽  
pp. 378-386 ◽  
Author(s):  
Ana Marija Grancaric ◽  
Lea Botteri ◽  
Jenny Alongi ◽  
Anita Tarbuk

Purpose – The cotton and its blends is the most commonly used textile material in the design and production of protective clothing. However, as the cellulose textiles are the most flammable materials it is necessary to improve its flame retardancy. The government regulations have been the driving force for developing durable flame retardants finishes for textile, to improve its performance and to reduce the negative impact on the environment. The paper aims to discuss these issues. Design/methodology/approach – This paper investigates the effect of silica precursor (tetraethoxysilane – TEOS) added in bath with conventional flame retardant urea/ammonium polyphosphate in full and half concentration for achieving environmental-friendly cotton flame retardancy. Silica precursors have excellent thermal stability and high heat resistance with very limited release of toxic gases during the thermal decomposition. Synergistic effect between urea/ammonium polyphosphate and TEOS has been calculated. Thermal properties of treated cotton fabrics were determined by limiting oxygen index (LOI), thermogravimetric analysis (TGA) and microscale combustion calorimeter (MCC). Findings – TEOS, significantly improves the flame retardancy of cotton when added in the bath with conventional flame retardants urea/ammonium polyphosphate by increasing the LOI values and other thermal properties as increasing char residue measured by TGA and higher heat release rate measured by MCC. Originality/value – This paper represent a good synergistic effect between urea/ammonium polyphosphate and TEOS. This phenomena is evident in better thermal properties when TEOS was added in the bath with conventional flame retardant especially for half concentration of urea/ammonium polyphosphate.


2021 ◽  
Vol 41 (4) ◽  
pp. 281-288
Author(s):  
Hongmei Peng ◽  
Qi Yang

Abstract In this paper, cerium nitrate supported silica was prepared as a new type of catalytic synergist to improve the flame retardancy in polypropylene. When 1% of Ce(NO3)2 supported SiO2 was added, the vertical combustion performance of UL-94 of polypropylene composites was improved to V-0, the limiting oxygen index (LOI) was increased to 33.5. From the thermogravimetric analysis (TGA), the residual carbon of C and D was increased by about 6% at high temperature compared with B. When adding supported catalyst, the heat release rate (HRR) and total heat release (THR) were significantly reduced according to the microscale combustion calorimetry (MCC), the HRR of sample E with 2% synergist was the lowest. The combustion behaviors of intumescent flame retardant sample B and sample D were analyzed by cone calorimeter test (CCT), the HRR of sample D with supported synergist was significantly reduced, and the PHRR decreased from 323 kW/m2 to 264 kW/m2. The morphologies of the residue chars after vertical combustion of polypropylene composites observed by scanning electron microscopy (SEM) gave positive evidence that the supported synergist could catalyze the decomposition of intumescent flame retardants into carbon, which was the main reason for improving the flame retardancy of materials.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3746 ◽  
Author(s):  
Jacob Sag ◽  
Daniela Goedderz ◽  
Philipp Kukla ◽  
Lara Greiner ◽  
Frank Schönberger ◽  
...  

Phosphorus-containing flame retardants synthesized from renewable resources have had a lot of impact in recent years. This article outlines the synthesis, characterization and evaluation of these compounds in polyesters and epoxy resins. The different approaches used in producing biobased flame retardant polyesters and epoxy resins are reported. While for the polyesters biomass derived compounds usually are phosphorylated and melt blended with the polymer, biobased flame retardants for epoxy resins are directly incorporated into the polymer structure by a using a phosphorylated biobased monomer or curing agent. Evaluating the efficiency of the flame retardant composites is done by discussing results obtained from UL94 vertical burning, limiting oxygen index (LOI) and cone calorimetry tests. The review ends with an outlook on future development trends of biobased flame retardant systems for polyesters and epoxy resins.


Sign in / Sign up

Export Citation Format

Share Document