Effects of moisture content on explosion characteristics of incense dust in incense factory

Author(s):  
Shun-Chieh Chang ◽  
Yu-Chi Cheng ◽  
Xin-Hai Zhang ◽  
Chi-Min Shu

AbstractIncense is an indispensable material with religion and life in Asia. It is also a bridge of cultural expression and inheritance. Because the operating environment concentration of dust generated during the production process is considerable, most of the research pertaining to the hazard of incense factories has investigated air pollution, such as PM2.5, PM10, and VOCs. However, the production of incense causes dust dispersion, high temperature from ovens, and static electricity generated by friction. It can all possibly lead a dust explosion. To prevent and alleviate hazard from re-occurring, we used sandalwood dust at an incense factory in Taiwan, measured the effect of moisture content on the explosion parameters under normal conditions by 20-L apparatus, and used the oven to diminish its moisture content to 0%, 10.0%, and 15.0% as a control group to analyze the explosion characteristics at the different moisture contents, such as maximum explosion pressure and explosion limit. The results showed that the minimum ignition energy of dry dust was 30 mJ. Beyond doubt, incense factories face potential explosion hazards. The above results could be evaluated by the most dangerous range to avoid incense dust in this range at the workplace, lessening hazards caused by a dust explosion. The effect of moisture content on the suppression of the dust explosion was explored.

Author(s):  
Richard Kuracina ◽  
Zuzana Szabová ◽  
Matej Menčík

Abstract A dust explosion occurs when an airborne combustible dust cloud encounters an effective ignition source. The resulting pressure and temperature increase can severely injure people and damage surrounding equipment and buildings, and therefore needs to be prevented or controlled (Taveau, 2016). The article deals with the measurement of maximum explosion pressure and maximum rate of explosion pressure rise of sugar dust cloud. The measurements were carried out according to STN EN 14034-1+A1:2011 Determination of explosion characteristics of dust clouds. Part 1: Determination of the maximum explosion pressure pmax of dust clouds, the maximum rate of explosion pressure rise according to STN EN 14034-2+A1:2012 Determination of explosion characteristics of dust clouds - Part 2: Determination of the maximum rate of explosion pressure rise (dp/dt)max of dust clouds and Determination of explosion characteristics of dust clouds. Part 3: Determination of the lower explosion limit LEL of dust clouds. The sugar dust cloud in the chamber is achieved mechanically. The testing of explosions of sugar dust clouds showed that the maximum value of the pressure was reached at concentrations of 1000 g/m3 and its value is 6,89 bars.


2022 ◽  
Vol 354 ◽  
pp. 00006
Author(s):  
Marius Kovacs ◽  
Lorand Toth ◽  
Sorin Simion

Most of combustible dusts present both fire and explosion hazard. Explosion may occur at certain concentrations of dust mixed with air and in the presence of an ignition source. The threat posed by this real danger was confirmed by the events that took place in economic units such as: feed factories, wood products, textile industry, steel, etc. Among the parameters of explosiveness of combustible dust, which can cause an explosion, we mention: maximum explosion pressure, lower explosion limit, explosive index, minimum ignition energy, electrical resistivity of dust, minimum ignition temperature of dust layer and cloud, particle size and concentration of dust in suspension. The current paper presents the results of determinations of combustible wood dust concentrations, performed at an important economic unit, manufacturing veneer and wood panels, at a dusting ventilation installation composed of fan, cyclone and textile filter. These determinations were made in the pipe connecting the fan and the bag filter, to assess possible danger of explosion in the pipe, by relating the measured concentration to the lower explosion limit (concentration of wood dust).


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1616
Author(s):  
Vincenzo Titone ◽  
Antonio Correnti ◽  
Francesco Paolo La Mantia

This work is focused on the influence of moisture content on the processing and mechanical properties of a biodegradable polyester used for applications in injection molding. The pellets of the biodegradable polyester were exposed under different relative humidity conditions at a constant temperature before being compression molded. The compression-molded specimens were again placed under the above conditions before the mechanical testing. With all these samples, it is possible to determine the effect of moisture content on the processing and mechanical properties separately, as well as the combined effect of moisture content on the mechanical properties. The results obtained showed that the amount of absorbed water—both before processing and before mechanical testing—causes an increase in elongation at break and a slight reduction of the elastic modulus and tensile strength. These changes have been associated with possible hydrolytic degradation during the compression molding process and, in particular, with the plasticizing action of the moisture absorbed by the specimens.


IAWA Journal ◽  
1986 ◽  
Vol 7 (3) ◽  
pp. 243-250 ◽  
Author(s):  
Juliet Prior ◽  
K. L. Alvin

Air-dried and saturated cubes of fully developed wood of Dichrostachys cinerea (Leguminosae) and Salix subserrata (Salicaceae) were charred for 60 minutes at 400°C. An initial increase in moisture content caused few structural alterations in Salix but in Dichrostachys it resulted in considerable ray distension and massive deformation of non-gelatinous fibres. An attempt is made to correlate these observations with the physical and chemical changes known to occur during wood pyrolysis.


2011 ◽  
Vol 49 (9-10) ◽  
pp. 1139-1152 ◽  
Author(s):  
Juan Carlos Hernández-Castañeda ◽  
Huseyin Kursad Sezer ◽  
Lin Li

Sign in / Sign up

Export Citation Format

Share Document