Modeling the Dynamic Response of a Carbon-Fiber-Reinforced Plate at Resonant Vibrations Considering the Internal Friction in the Material and the External Aerodynamic Damping

2017 ◽  
Vol 53 (4) ◽  
pp. 425-440 ◽  
Author(s):  
V. N. Paimushin ◽  
V. A. Firsov ◽  
V. M. Shishkin
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Pascal Simon ◽  
Philipp Drechsel ◽  
Peter Katrik ◽  
Kay-Obbe Voss ◽  
Philipp Bolz ◽  
...  

Various graphite targets with a tantalum core were exposed to 440 GeV pulsed proton beams at the HiRadMat facility at CERN. The dynamic response was investigated by monitoring the surface velocity of the samples by laser Doppler vibrometry. The study comprises different graphite grades, such as polycrystalline, expanded and carbon-fiber reinforced graphite, and low-density graphitic foams, all candidates for beam-intercepting devices in high-power accelerators. The purpose of the tantalum core is to concentrate the large energy deposition in this high-density material that withstands the localized beam-induced temperature spike. The generated pressure waves are estimated to result in stresses of several hundred MPa which subsequently couple with the surrounding graphite materials where they are damped. Spatial energy deposition profiles were obtained by the Monte Carlo code FLUKA and the dynamic response was modelled using the implicit code ANSYS. Using advanced post-processing techniques, such as fast Fourier transformation and continuous wavelet transformation, different pressure wave components are identified and their contribution to the overall dynamic response of a two-body target and their failure mode are discussed. We show that selected low-intensity beam impacts can be simulated using straight-forward transient coupled thermal/structural implicit simulations. Carbon-fiber reinforced graphites exhibit large (macroscopic) mechanical strength, while their low-strength graphite matrix is identified as a potential source of failure. The dynamic response of low-density graphitic foams is surprisingly favourable, indicating promising properties for the application as high-power beam dump material.


2019 ◽  
Vol 64 (4) ◽  
pp. 535-539
Author(s):  
Yu. E. Kalinin ◽  
A. T. Kosilov ◽  
O. V. Ovdak ◽  
A. M. Kudrin ◽  
O. A. Karaeva ◽  
...  

Author(s):  
Tae Hwa Lee ◽  
Pei-Chung Wang ◽  
S. Jack Hu ◽  
Mihaela Banu

Abstract Ultrasonic welding is one of the most practical joining method for polymer composite materials and has been adapted in the aerospace and automotive industries. To effectively join polymer composite assemblies, it is critical to understand the dynamic response of the welding system so that sound heating generation and welding sequences in the ultrasonic welding of the assemblies can be properly obtained. This study presents a dynamic response model of a multi-spot configuration assembly using ultrasonic welding. Here, a dynamic model of joining a U-shaped carbon fiber reinforced thermoplastic composite part with a flat part is developed and analyzed through the ratio between the frequencies generated at different locations of the spot with respect to the edges of the assembly and the natural frequency. Finally, this ratio is correlated with the weld quality of the multiple spot configuration. Guidelines for designing multisport sequence are extracted. This study provides a method to design the welding sequence in ultrasonic welding of carbon fiber reinforced composites.


Author(s):  
Hong-Ming Lin ◽  
C. H. Liu ◽  
R. F. Lee

Polyetheretherketone (PEEK) is a crystallizable thermoplastic used as composite matrix materials in application which requires high yield stress, high toughness, long term high temperature service, and resistance to solvent and radiation. There have been several reports on the crystallization behavior of neat PEEK and of CF/PEEK composite. Other reports discussed the effects of crystallization on the mechanical properties of PEEK and CF/PEEK composites. However, these reports were all concerned with the crystallization or melting processes at or close to atmospheric pressure. Thus, the effects of high pressure on the crystallization of CF/PEEK will be examined in this study.The continuous carbon fiber reinforced PEEK (CF/PEEK) laminate composite with 68 wt.% of fibers was obtained from Imperial Chemical Industry (ICI). For the high pressure experiments, HIP was used to keep these samples under 1000, 1500 or 2000 atm. Then the samples were slowly cooled from 420 °C to 60 °C in the cooling rate about 1 - 2 degree per minute to induce high pressure crystallization. After the high pressure treatment, the samples were scanned in regular DSC to study the crystallinity and the melting temperature. Following the regular polishing, etching, and gold coating of the sample surface, the scanning electron microscope (SEM) was used to image the microstructure of the crystals. Also the samples about 25mmx5mmx3mm were prepared for the 3-point bending tests.


Sign in / Sign up

Export Citation Format

Share Document