Identification of the chromosomal region responsible for high-temperature stress tolerance during the grain-filling period in rice

2013 ◽  
Vol 32 (1) ◽  
pp. 223-232 ◽  
Author(s):  
Kenta Shirasawa ◽  
Takuma Sekii ◽  
Yoshinori Ogihara ◽  
Teppei Yamada ◽  
Sachiko Shirasawa ◽  
...  
Genetika ◽  
2020 ◽  
Vol 52 (3) ◽  
pp. 1107-1125
Author(s):  
Mohamed Barakat ◽  
Abdullah Al-Doss ◽  
Khaled Moustafa ◽  
Mohamed Motawei ◽  
Ibrahim Al-Ashkar ◽  
...  

Stress induced by high temperature represents a major constraint over wheat production in many production areas. Here, the comprehensive coverage of the wheat genome achievable using single nucleotide polymorphism markers was exploited to carry out a genetic analysis targeting yield components in plants exposed to high temperature stress. The mapping population was a set of doubled haploid lines derived from a cross between the cultivars Yecora Rojo and Ksu106. Both of the parental cultivars and their derived population were tested in the field in two locations over two consecutive seasons; at each site, two sowing dates were included, with the later sowing intended to ensure that the plants were exposed to high temperature stress during the grain filling period. Composite interval mapping detected 93 quantitative trait loci influencing grain yield and some related traits, along with 20 loci associated with a ?heat susceptibility index? (HSI). The loci were distributed over all 21 of the wheat chromosomes. Some of these loci were of large enough effect to be considered as candidates for the marker-assisted breeding of high temperature tolerance in wheat.


2020 ◽  
Vol 53 (2) ◽  
Author(s):  
Khalil Ahmed Laghari ◽  
Abdul Jabbar Pirzada ◽  
Mahboob Ali Sial ◽  
Muhammad Athar Khan ◽  
Jamal Uddin Mangi

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 687
Author(s):  
Chan Seop Ko ◽  
Jin-Baek Kim ◽  
Min Jeong Hong ◽  
Yong Weon Seo

High-temperature stress during the grain filling stage has a deleterious effect on grain yield and end-use quality. Plants undergo various transcriptional events of protein complexity as defensive responses to various stressors. The “Keumgang” wheat cultivar was subjected to high-temperature stress for 6 and 10 days beginning 9 days after anthesis, then two-dimensional gel electrophoresis (2DE) and peptide analyses were performed. Spots showing decreased contents in stressed plants were shown to have strong similarities with a high-molecular glutenin gene, TraesCS1D02G317301 (TaHMW1D). QRT-PCR results confirmed that TaHMW1D was expressed in its full form and in the form of four different transcript variants. These events always occurred between repetitive regions at specific deletion sites (5′-CAA (Glutamine) GG/TG (Glycine) or (Valine)-3′, 5′-GGG (Glycine) CAA (Glutamine) -3′) in an exonic region. Heat stress led to a significant increase in the expression of the transcript variants. This was most evident in the distal parts of the spike. Considering the importance of high-molecular weight glutenin subunits of seed storage proteins, stressed plants might choose shorter polypeptides while retaining glutenin function, thus maintaining the expression of glutenin motifs and conserved sites.


2014 ◽  
Vol 19 (4) ◽  
pp. 324-329 ◽  
Author(s):  
S. Mukesh Sankar ◽  
C. Tara Satyavathi ◽  
S. P. Singh ◽  
Madan Pal Singh ◽  
C. Bharadwaj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document