scholarly journals Creep of particle and short fibre reinforced polyurethane rubber

Author(s):  
Yi Cui ◽  
Trevor William Clyne

AbstractTensile stress–strain testing and creep testing have been carried out on a polyurethane rubber, at three temperatures, with and without either particulate or short fibre alumina reinforcement. A previous paper reported concerning composites with particulate reinforcement and the present work is focused on the effect of the fibres. The samples were made via a blending and extrusion process that produced a certain degree of fibre alignment (along the direction of loading). Prior milling procedures were used to produce fibres with two different ranges of aspect ratio (with averages about 10 and 16). When expressed as true stress–strain relationships, all materials exhibit approximately linear responses. The dependence of stiffness on the volume fraction and aspect ratio of the reinforcement was found to conform well to the Eshelby model predictions. Moreover, the creep behaviour of all of the materials can be captured well by a Miller–Norton formulation, using the average matrix stress predicted by the Eshelby model. A striking conclusion is that it is both predicted and observed that short fibres are much more effective in reducing the creep rate than is the case with particles.

1995 ◽  
Vol 4 (1) ◽  
pp. 096369359500400
Author(s):  
T.D. Papathanasiou

The predictions of the Halpin equation concerning the effect of fibre volume fraction and fibre aspect ratio on the effective tensile modulus of uniaxially aligned short-fibre composites are compared with computational experiments on three-dimensional, multiparticle composite samples. The method of boundary elements is used to model the mechanical behaviour of composite specimens consisting of up to 40 discrete aligned fibres randomly dispersed in an elastic matrix. Statistical averages of computational results relating the effective tensile modulus to the aspect ratio and volume fraction of the fibres are found to agree very well with the predictions of the Halpin equation for fibre aspect ratio up to 10 and fibre volume fractions up to 20%. Computational results seem to indicate that the predictions of the Halpin equation fall bellow those of micro-mechanical models at higher volume fractions.


2019 ◽  
Vol 827 ◽  
pp. 31-36
Author(s):  
Andrea Sellitto ◽  
Aniello Riccio ◽  
A. Russo ◽  
Carmine Napolitano ◽  
Mauro Zarrelli ◽  
...  

Composite materials structures are particularly susceptible to the damages induced by low-velocity impacts that may result in Barely Visible Impact Damages (BVIDs), which can hardly be identified through visual inspection. These damages are particularly dangerous, since they can critically reduce the mechanical properties of the impacted structures. In this work, the damage induced in impacted long and short fibre composite specimens has been experimentally evaluated by means of Non-Destructive Technique (NDT) inspections. The damages size and location have been evaluated by means of ultrasonic testing to assess the influence of fibres aspect ratio (long and short fibres), fibres material (carbon and glass), volume fraction, and impact energy for low velocity impacts on composite specimens. Considerations about the failure mechanisms arising as a consequence of the impact event and their interactions have been finally introduced.


1994 ◽  
Vol 28 (7) ◽  
pp. 588-606 ◽  
Author(s):  
Michael R. Piggott

The interphase between reinforcing fibers and polymers is brittle, and does not behave in the way it was assumed to when the standard theory for composite strength was developed. Futhermore, this theory predicts curved stress-strain plots for aligned short fibre composites, yet the evidence for this is unconvincing, and there is much new evidence that these stress-strain curves are straight. The time has therefore come to abandon this approach and take into account, instead, the apparent brittleness and sudden failure of aligned fibre reinforced polymers. This paper presents the evidence, and introduces the new approach. This involves microcrack development in composites from stress concentrations at the fibre ends. Since such failure initiation can occur simultaneously at many sites, the stress required to cause abrupt failure across the whole cross section can be estimated by a simple force balance. This analysis gives the familiar expressions used for short fibre composites, with one important difference. For carbon reinforced polymers, the polymer has to reach its breaking strength before failure, so that there is no minimum volume fraction for reinforcement with these composites. With glass, on the other hand, which has a higher breaking strain than most thermosets used for composites, the matrix appears unable to exert its full strength. Thus low fibre volume fraction glass fibre composites can be weaker than the matrix, and a minimum volume fraction for reinforcement exists.


2006 ◽  
Vol 21 (8) ◽  
pp. 2136-2145 ◽  
Author(s):  
Weimin Yue ◽  
Ryan K. Roeder

A micromechanical model was developed to predict the elastic moduli of hydroxyapatite (HA) whisker reinforced polymer biocomposites based upon the elastic properties of each phase and the reinforcement volume fraction, morphology, and preferred orientation. The effects of the HA whisker volume fraction, morphology, and orientation distribution were investigated by comparing model predictions with experimentally measured elastic moduli for HA whisker reinforced high-density polyethylene composites. Predictions using experimental measurements of the HA whisker aspect ratio distribution and orientation distribution were also compared to common idealized assumptions. The best model predictions were obtained using the experimentally measured HA whisker aspect ratio distribution and orientation distribution.


2021 ◽  
Vol 13 (9) ◽  
pp. 5086
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Ali J. Chamkha

Single and double impinging jets heat transfer of non-Newtonian power law nanofluid on a partly curved surface under the inclined magnetic field effects is analyzed with finite element method. The numerical work is performed for various values of Reynolds number (Re, between 100 and 300), Hartmann number (Ha, between 0 and 10), magnetic field inclination (γ, between 0 and 90), curved wall aspect ratio (AR, between 01. and 1.2), power law index (n, between 0.8 and 1.2), nanoparticle volume fraction (ϕ, between 0 and 0.04) and particle size in nm (dp, between 20 and 80). The amount of rise in average Nusselt (Nu) number with Re number depends upon the power law index while the discrepancy between the Newtonian fluid case becomes higher with higher values of power law indices. As compared to case with n = 1, discrepancy in the average Nu number are obtained as −38% and 71.5% for cases with n = 0.8 and n = 1.2. The magnetic field strength and inclination can be used to control the size and number or vortices. As magnetic field is imposed at the higher strength, the average Nu reduces by about 26.6% and 7.5% for single and double jets with n greater than 1 while it increases by about 4.78% and 12.58% with n less than 1. The inclination of magnetic field also plays an important role on the amount of enhancement in the average Nu number for different n values. The aspect ratio of the curved wall affects the flow field slightly while the average Nu variation becomes 5%. Average Nu number increases with higher solid particle volume fraction and with smaller particle size. At the highest particle size, it is increased by about 14%. There is 7% variation in the average Nu number when cases with lowest and highest particle size are compared. Finally, convective heat transfer performance modeling with four inputs and one output is successfully obtained by using Adaptive Neuro-Fuzzy Interface System (ANFIS) which provides fast and accurate prediction results.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2143
Author(s):  
Shaimaa I. Gad ◽  
Mohamed A. Attia ◽  
Mohamed A. Hassan ◽  
Ahmed G. El-Shafei

In this paper, an integrated numerical model is proposed to investigate the effects of particulate size and volume fraction on the deformation, damage, and failure behaviors of particulate-reinforced metal matrix composites (PRMMCs). In the framework of a random microstructure-based finite element modelling, the plastic deformation and ductile cracking of the matrix are, respectively, modelled using Johnson–Cook constitutive relation and Johnson–Cook ductile fracture model. The matrix-particle interface decohesion is simulated by employing the surface-based-cohesive zone method, while the particulate fracture is manipulated by the elastic–brittle cracking model, in which the damage evolution criterion depends on the fracture energy cracking criterion. A 2D nonlinear finite element model was developed using ABAQUS/Explicit commercial program for modelling and analyzing damage mechanisms of silicon carbide reinforced aluminum matrix composites. The predicted results have shown a good agreement with the experimental data in the forms of true stress–strain curves and failure shape. Unlike the existing models, the influence of the volume fraction and size of SiC particles on the deformation, damage mechanism, failure consequences, and stress–strain curve of A359/SiC particulate composites is investigated accounting for the different possible modes of failure simultaneously.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
Ali Zamani ◽  
F. Handan Tezel ◽  
Jules Thibault

Membrane-based processes are considered a promising separation method for many chemical and environmental applications such as pervaporation and gas separation. Numerous polymeric membranes have been used for these processes due to their good transport properties, ease of fabrication, and relatively low fabrication cost per unit membrane area. However, these types of membranes are suffering from the trade-off between permeability and selectivity. Mixed-matrix membranes, comprising a filler phase embedded into a polymer matrix, have emerged in an attempt to partly overcome some of the limitations of conventional polymer and inorganic membranes. Among them, membranes incorporating tubular fillers are new nanomaterials having the potential to transcend Robeson’s upper bound. Aligning nanotubes in the host polymer matrix in the permeation direction could lead to a significant improvement in membrane permeability. However, although much effort has been devoted to experimentally evaluating nanotube mixed-matrix membranes, their modelling is mostly based on early theories for mass transport in composite membranes. In this study, the effective permeability of mixed-matrix membranes with tubular fillers was estimated from the steady-state concentration profile within the membrane, calculated by solving the Fick diffusion equation numerically. Using this approach, the effects of various structural parameters, including the tubular filler volume fraction, orientation, length-to-diameter aspect ratio, and permeability ratio were assessed. Enhanced relative permeability was obtained with vertically aligned nanotubes. The relative permeability increased with the filler-polymer permeability ratio, filler volume fraction, and the length-to-diameter aspect ratio. For water-butanol separation, mixed-matrix membranes using polydimethylsiloxane with nanotubes did not lead to performance enhancement in terms of permeability and selectivity. The results were then compared with analytical prediction models such as the Maxwell, Hamilton-Crosser and Kang-Jones-Nair (KJN) models. Overall, this work presents a useful tool for understanding and designing mixed-matrix membranes with tubular fillers.


2004 ◽  
Vol 41 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Dieter Stolle ◽  
Peijun Guo ◽  
Gabriel Sedran

This paper analyzes the impact of natural random variation of soil properties on the constitutive modelling of geomaterial behaviour. A theoretical framework for accommodating variation in soil properties is presented. The framework is then used to examine the consequence of parameter variability on stress–strain relations. An important observation is that average soil parameters from a series of tests on small specimens, in which density of the specimens varies randomly, do not necessarily reflect the average constitutive behaviour of soil. Model predictions are shown to be consistent with the experimental data.Key words: random variability, deterministic analysis, soil parameters, constitutive model.


2014 ◽  
Vol 217-218 ◽  
pp. 201-207
Author(s):  
Chun Fang Wang ◽  
Kai Kun Wang ◽  
Zhe Luo

Flexible thixo-extrusion, as an innovative near-net-shape forming method, has huge advantages in processing the components with complex geometry. However, it should keep in mind that conventional liquid casting still represents the dominant mean of aluminum alloys production. One of the obstacles the thixo-extrusion has to overcome is lack of proof that can live up to the claim that thixo-extruded components have better mechanical properties. The main aim of this paper is to simulate the flexible thixo-extrusion process of aluminum alloy A356 and investigate the control method of materials flow front. An isothermal compression test of aluminum alloy A356 is first conducted to obtain the true stress-strain curves at different temperatures and strain rates. A constitutive equation describing the relationship of stress, strain, strain rate and temperature is fitted by Origin and then imported to the DEFORM-3D simulation software. The results show that the quality of final component is enormously influenced by the radius of the arcs and the flexible thixo-extruded components has less defects compared with the conventional extruded ones.


Sign in / Sign up

Export Citation Format

Share Document