short fibres
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 19)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 54 (4) ◽  
pp. 30-36
Author(s):  
Orif Zh. Murodov ◽  
Mansurbek E. Ruzmetov

The results of the experiments showed that with an increased density of raw cotton that occurs in the lower layers of the bundle and an increase in its shelf life, an increase in the mass fraction of defects and trash in the fibre is observed. It was found that with an increase in the density of raw cotton more than 250 kg/m3, the mass fraction of defects and weeds in the fibre increases by almost 10 %, the damage to seeds by 6 %, the staple mass length decreases by 3 %, and the proportion of short fibres by 9 %. The increase in the shelf life of the fibre also negatively affects the quality of the fibre and seeds and, most importantly, cotton for grades III–V. An increase in the mass fraction of flaws and trash in the fibre, in turn, affects the unevenness of the yarn and the quality category of the resulting yarn.


Author(s):  
Yi Cui ◽  
Trevor William Clyne

AbstractTensile stress–strain testing and creep testing have been carried out on a polyurethane rubber, at three temperatures, with and without either particulate or short fibre alumina reinforcement. A previous paper reported concerning composites with particulate reinforcement and the present work is focused on the effect of the fibres. The samples were made via a blending and extrusion process that produced a certain degree of fibre alignment (along the direction of loading). Prior milling procedures were used to produce fibres with two different ranges of aspect ratio (with averages about 10 and 16). When expressed as true stress–strain relationships, all materials exhibit approximately linear responses. The dependence of stiffness on the volume fraction and aspect ratio of the reinforcement was found to conform well to the Eshelby model predictions. Moreover, the creep behaviour of all of the materials can be captured well by a Miller–Norton formulation, using the average matrix stress predicted by the Eshelby model. A striking conclusion is that it is both predicted and observed that short fibres are much more effective in reducing the creep rate than is the case with particles.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 3008
Author(s):  
Rajab Abousnina ◽  
Haifa Ibrahim Alsalmi ◽  
Allan Manalo ◽  
Rochstad Lim Allister ◽  
Omar Alajarmeh ◽  
...  

Sand contaminated with crude oil is becoming a major environmental issue around the world, while at the same time, fly ash generated by coal-fired power stations is having a detrimental effect on the environment. Previous studies showed that combining these two waste materials can result in an environmentally sustainable geopolymer concrete. Incorporating sand contaminated with crude oil up to a certain level (4% by weight) can improve the mechanical properties of the produced geopolymer concrete but beyond this level can have a detrimental effect on its compressive strength. To overcome this challenge, this study introduces short fibres to enhance the mechanical properties of geopolymer mortar containing fine sand contaminated with 6% by weight of light crude oil. Four types of short fibres, consisting of twisted polypropylene (PP) fibres, straight PP fibres, short glass fibres and steel fibres in different dosages (0.1, 0.2, 0.3, 0.4 and 0.5% by volume of geopolymer mortar) are considered. The optimum strength was obtained when straight PP fibres were used wherein increases of up to 39% and 74% of the compressive and tensile strength, respectively, of the geopolymer mortar were achieved. Moreover, a fibre dosage of 0.5% provided the highest enhancement in the mechanical properties of the geopolymer mortar with 6% crude oil contamination. This result indicates that the reduction in strength of geopolymer due to the addition of sand with 6% crude oil contamination can be regained by using short fibres, making this new material from wastes suitable for building and construction applications.


Author(s):  
Mrs. M. Amala

The main objective of the fibre glass in concrete roof tile is to obtain good strength, heat resistant, & water seepage resistant roof tile. To ensure that the roof tile produced plays a role development with minimum cost, and high flexure strength. To draw an analogy between the normal concrete roof tile with glass fibre concrete roof tile. The sizes of short fibres used were 25mm and the glass fibres were alkali resistant. The effect of these short fibres on wet transverse strength, compressive strength and water absorption was carried out.


2021 ◽  
Vol 5 (1) ◽  
pp. 186-192
Author(s):  
E. T. Tembe ◽  
David Oriabure Ekhuemelo ◽  
R. Astuwe

Hura crepitans L. (Euphorbiaceae) is a tropic tree species that was investigated for pulp and paper characteristics in this study. The diameters of five (5) different stands of Hura crepitans trees were first determined using diameter tape. Wood slivers were obtained from sapwood of the trees parallel to grain and at three (3) different positions along the axis, at the base (5%), middle (50%) and top (90%). The wood slivers were macerated in a mixture of equal volumes of glacial acetic acid and hydrogen peroxide at between 80 -100 degrees Celsius for 2 hours. Macerated fibres were washed and used to prepare microscopic slides where 15 fibres were measured per slide. Data recorded was subjected to One-way Analysis of Variance (ANOVA) based on Completely Randomized Design (CRD). Results show that both the primary fibre characteristics and derived characteristics were significantly different at p<0.05? The mean fibre characteristics ranged as follows, Fibre lengths (0.87-1.16 mm), Fibre diameter (18.84 - 24.44 µm), Lumen width (9.92-16.89 µm) and Cell wall thickness (3.93-4.60 µm). The derived mean fibre characteristics ranged as follows; Runkel ratio (0.36-0.78), Elasticity coefficient (44.20-67.91%), Rigidity coefficient (15.98-27.82 %) and Slenderness ratio (0.44-0.80). This result implies that Hura crepitans has short fibres with high flexibility, which can collapse easily and form a fully bonded paper and is therefore recommended for pulp and paper production


Author(s):  
M.N. Obaid ◽  
S.H. Radhi

Purpose: The number of people suffering from Degenerative Disc Disease (DDD) is increasing. The disease causes heavy pain and restrict a number of day-to-day life activities. In extreme cases, the degraded disc is removed under total disc replacement which is usually made up of Ultra-High Molecular Weight Polyethylene (UHMWPE). The material has astounding biocompatible characteristics mechanical properties and wear resistance. However, these characteristics are insufficient in arthroplasty application. Therefore, research investigations are ongoing to improve tribological properties through reinforcement that may result in a composite material of UHMWPE. Thus the current study is aimed at reinforcing UHMWPE with short fibres of polyesters to enhance the tribological properties and surface characteristic so as to improve wear resistance and nourish the fibroblast cells on synthetic disc. Design/methodology/approach: The researcher prepared UHMWPE composite material, reinforced with different weight fractions of short polyester fibres (2, 4, 6, 8 and 10% following hot press method. Further pin-on-disc device was used to study the tribological properties (coefficient of friction and volume of wear). The study tested surface roughness and surface characteristics by atomic force microscopy (AFM) device, hardness by shore D device, contact angle to study the effect of polyester short fibres on wettability of UHMWPE surface and tested the thermal properties and crystalline degree using Differential Scanning Calorimetry measurement (DSC) device. Findings: The results infer that the wear resistance got improved when using 2% w.t polyester though it got decreased initially. However, the value was still more than neat UHMWPE. There was a decrease observed in coefficient of friction, but after 4 w.t% polyester, the coefficient of friction got increased due to increasing percentage of fibres which make it harder and stiff compared to UHMWPE. There was a decline observed in surface roughness due to alignment of the fibres with smooth surface. The contact angle got increased in a moderate range while the roughness enhanced the growth of fibroblast cell. The hardness of composite material got increased, because the fibres turned stiffer and harder than the matrix. DSC results infer the improvements in thermal stability due to high thermal properties of polyester fibres compared to UHMWPE. The degree of crystallinity got increased which in turn enhanced wear resistance, especially at 6 w.t % polyester fibres. There was a mild increase observed in density since the density of polyester is higher than polymer. Research limitations/implications: The major challenge was the dispersion of fibres. Uniform distribution of fibres within the matrix (UHMWPE) was achieved through two steps of mixing processes such as mechanical mixture and twin extruder. In future studies, fatigue tests must be conducted to study the behaviour of prepared composite materials under fatigue cycle. Practical implications: A significant objective is how to connect among different properties to obtain good improvement in tribological and surface properties so as to enhance wear resistance and growth of fibrolase cells. Originality/value: In this study, polymeric short fibres were used as reinforcement with polymeric matrix to enhance the wettability of fibres with matrix. In this way, the bonding among them got increased which supports the tribological, surface, and crystalline behaviour.


2020 ◽  
Vol 8 (2) ◽  
pp. 79-91
Author(s):  
Miguel Fernando Aldas Carrasco ◽  
Nicolas Jérôme Rouault ◽  
José Miguel Ferri Azor ◽  
Juan López-Martínez ◽  
María Dolores Samper Madrigal

Sign in / Sign up

Export Citation Format

Share Document