scholarly journals Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview

2008 ◽  
Vol 165 (4-5) ◽  
pp. 331-339 ◽  
Author(s):  
Carlos P. Taborda ◽  
Marcelo B. da Silva ◽  
Joshua D. Nosanchuk ◽  
Luiz R. Travassos
2020 ◽  
Vol 21 (3) ◽  
pp. 245-264 ◽  
Author(s):  
Laura C. García-Carnero ◽  
José A. Martínez-Álvarez ◽  
Luis M. Salazar-García ◽  
Nancy E. Lozoya-Pérez ◽  
Sandra E. González-Hernández ◽  
...  

: By being the first point of contact of the fungus with the host, the cell wall plays an important role in the pathogenesis, having many molecules that participate as antigens that are recognized by immune cells, and also that help the fungus to establish infection. The main molecules reported to trigger an immune response are chitin, glucans, oligosaccharides, proteins, melanin, phospholipids, and others, being present in the principal pathogenic fungi with clinical importance worldwide, such as Histoplasma capsulatum, Paracoccidioides brasiliensis, Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Blastomyces dermatitidis, and Sporothrix schenckii. Knowledge and understanding of how the immune system recognizes and responds to fungal antigens are relevant for the future research and development of new diagnostic tools and treatments for the control of mycosis caused by these fungi.


2000 ◽  
Vol 13 (1) ◽  
pp. 122-143 ◽  
Author(s):  
Mahmoud A. Ghannoum

SUMMARY Microbial pathogens use a number of genetic strategies to invade the host and cause infection. These common themes are found throughout microbial systems. Secretion of enzymes, such as phospholipase, has been proposed as one of these themes that are used by bacteria, parasites, and pathogenic fungi. The role of extracellular phospholipase as a potential virulence factor in pathogenic fungi, including Candida albicans, Cryptococcus neoformans, and Aspergillus, has gained credence recently. In this review, data implicating phospholipase as a virulence factor in C. albicans, Candida glabrata, C. neoformans, and A. fumigatus are presented. A detailed description of the molecular and biochemical approaches used to more definitively delineate the role of phospholipase in the virulence of C. albicans is also covered. These approaches resulted in cloning of three genes encoding candidal phospholipases (caPLP1, caPLB2, and PLD). By using targeted gene disruption, C. albicans null mutants that failed to secrete phospholipase B, encoded by caPLB1, were constructed. When these isogenic strain pairs were tested in two clinically relevant murine models of candidiasis, deletion of caPLB1 was shown to lead to attenuation of candidal virulence. Importantly, immunogold electron microscopy studies showed that C. albicans secretes this enzyme during the infectious process. These data indicate that phospholipase B is essential for candidal virulence. Although the mechanism(s) through which phospholipase modulates fungal virulence is still under investigations, early data suggest that direct host cell damage and lysis are the main mechanisms contributing to fungal virulence. Since the importance of phospholipases in fungal virulence is already known, the next challenge will be to utilize these lytic enzymes as therapeutic and diagnostic targets.


2021 ◽  
Vol 7 (1) ◽  
pp. 54
Author(s):  
Eduardo Bagagli ◽  
Daniel Ricardo Matute ◽  
Hans Garcia Garces ◽  
Bernardo Guerra Tenório ◽  
Adalberto Garcia Garces ◽  
...  

Paracoccidioidomycosis is an endemic fungal disease to Latin America caused by at least five species-level genotypes of Paracoccidioides, named P. lutzii, P. brasiliensis (S1a and S1b populations), P. americana, P. restrepiensis, and P. venezuelensis. In this manuscript, we report on Paracoccidioides sp. sampling efforts in armadillos from two different areas in Brazil. We sequenced the genomes of seven Paracoccidioides isolates and used phylogenomics and populations genetics for genotyping. We found that P. brasiliensis and P. lutzii are both present in the Amazon region. Additionally, we identified two Paracoccidioides isolates that seem to be the result of admixture between divergent populations within P. brasiliensis sensu stricto. Both of these isolates were recovered from armadillos in a P. lutzii endemic area in Midwestern Brazil. Additionally, two isolates from human patients also show evidence of resulting from admixture. Our results suggest that the populations of P. brasiliensis sensu stricto exchange genes in nature. More generally, they suggest that population structure and admixture within species is an important source of variation for pathogenic fungi.


1998 ◽  
Vol 40 (3) ◽  
pp. 125-136 ◽  
Author(s):  
Cilmery Suemi KUROKAWA ◽  
Maria Fátima SUGIZAKI ◽  
Maria Terezinha Serrão PERAÇOLI

Pathogenic fungi that cause systemic mycoses retain several factors which allow their growth in adverse conditions provided by the host, leading to the establishment of the parasitic relationship and contributing to disease development. These factors are known as virulence factors which favor the infection process and the pathogenesis of the mycoses. The present study evaluates the virulence factors of pathogenic fungi such as Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis in terms of thermotolerance, dimorphism, capsule or cell wall components as well as enzyme production. Virulence factors favor fungal adhesion, colonization, dissemination and the ability to survive in hostile environments and elude the immune response mechanisms of the host. Both the virulence factors presented by different fungi and the defense mechanisms provided by the host require action and interaction of complex processes whose knowledge allows a better understanding of the pathogenesis of systemic mycoses.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Fabrício F. Fernandes ◽  
Aline F. Oliveira ◽  
Taise N. Landgraf ◽  
Cristina Cunha ◽  
Agostinho Carvalho ◽  
...  

ABSTRACT Among the endemic deep mycoses in Latin America, paracoccidioidomycosis (PCM), caused by thermodimorphic fungi of the Paracoccidioides genus, is a major cause of morbidity. Disease development and its manifestations are associated with both host and fungal factors. Concerning the latter, several recent studies have employed the methodology of gene modulation in P. brasiliensis using antisense RNA (AsRNA) and Agrobacterium tumefaciens-mediated transformation (ATMT) to identify proteins that influence fungus virulence. Our previous observations suggested that paracoccin (PCN), a multidomain fungal protein with both lectin and enzymatic activities, may be a potential P. brasiliensis virulence factor. To explore this, we used AsRNA and ATMT methodology to obtain three independent PCN-silenced P. brasiliensis yeast strains (AsPCN1, AsPCN2, and AsPCN3) and characterized them with regard to P. brasiliensis biology and pathogenicity. AsPCN1, AsPCN2, and AsPCN3 showed relative PCN expression levels that were 60%, 40%, and 60% of that of the wild-type (WT) strain, respectively. PCN silencing led to the aggregation of fungal cells, blocked the morphological yeast-to-mycelium transition, and rendered the yeast less resistant to macrophage fungicidal activity. In addition, mice infected with AsPCN1, AsPCN2, and AsPCN3 showed a reduction in fungal burden of approximately 96% compared with those inoculated with the WT strain, which displayed a more extensive destruction of lung tissue. Finally, mice infected with the PCN-silenced yeast strains had lower mortality than those infected with the WT strain. These data demonstrate that PCN acts as a P. brasiliensis contributory virulence factor directly affecting fungal pathogenesis. IMPORTANCE The nonexistence of efficient genetic transformation systems has hampered studies in the dimorphic fungus Paracoccidioides brasiliensis, the etiological agent of the most frequent systemic mycosis in Latin America. The recent development of a method for gene expression knockdown by antisense RNA technology, associated with an Agrobacterium tumefaciens-mediated transformation system, provides new strategies for studying P. brasiliensis. Through this technology, we generated yeasts that were silenced for paracoccin (PCN), a P. brasiliensis component that has lectin and enzymatic properties. By comparing the phenotypes of PCN-silenced and wild-type strains of P. brasiliensis, we identified PCN as a virulence factor whose absence renders the yeasts unable to undergo the transition to mycelium and causes a milder pulmonary disease in mice, with a lower mortality rate. Our report highlights the importance of the technology used for P. brasiliensis transformation and demonstrates that paracoccin is a virulence factor acting on fungal biology and pathogenesis. IMPORTANCE The nonexistence of efficient genetic transformation systems has hampered studies in the dimorphic fungus Paracoccidioides brasiliensis, the etiological agent of the most frequent systemic mycosis in Latin America. The recent development of a method for gene expression knockdown by antisense RNA technology, associated with an Agrobacterium tumefaciens-mediated transformation system, provides new strategies for studying P. brasiliensis. Through this technology, we generated yeasts that were silenced for paracoccin (PCN), a P. brasiliensis component that has lectin and enzymatic properties. By comparing the phenotypes of PCN-silenced and wild-type strains of P. brasiliensis, we identified PCN as a virulence factor whose absence renders the yeasts unable to undergo the transition to mycelium and causes a milder pulmonary disease in mice, with a lower mortality rate. Our report highlights the importance of the technology used for P. brasiliensis transformation and demonstrates that paracoccin is a virulence factor acting on fungal biology and pathogenesis.


PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e68434 ◽  
Author(s):  
Isaura Torres ◽  
Orville Hernandez ◽  
Diana Tamayo ◽  
Jose F. Muñoz ◽  
Natanael P. Leitão ◽  
...  

2012 ◽  
Vol 11 (3) ◽  
pp. 1676-1685 ◽  
Author(s):  
Milene C. Vallejo ◽  
Ernesto S. Nakayasu ◽  
Alisson L. Matsuo ◽  
Tiago J. P. Sobreira ◽  
Larissa V. G. Longo ◽  
...  

2000 ◽  
Vol 38 (8) ◽  
pp. 3106-3109 ◽  
Author(s):  
Andrea B. Motoyama ◽  
Emerson J. Venancio ◽  
Gilberto O. Brandão ◽  
Silvana Petrofeza-Silva ◽  
Ildinete S. Pereira ◽  
...  

We have amplified and sequenced the 5.8S and 28S ribosomal DNA genes and intergenic regions of Paracoccidioides brasiliensis, strain Pb01. Using primers specifically designed for both ribosomal DNA regions, we were able to discriminate betweenP. brasiliensis and other human pathogenic fungi by PCR. The use of this molecular marker could be important for paracoccidiodomycosis diagnosis and ecological and molecular epidemiological studies of P. brasiliensis in Latin America.


2004 ◽  
Vol 50 (6) ◽  
pp. 445-449 ◽  
Author(s):  
Renata Ferretti de Lima ◽  
Marcelly Maria dos Santos Brito ◽  
Guido Manoel Vidal Schäffer ◽  
Osana Cunha de Lima ◽  
Cintia de Moraes Borba

Morphological differentiation has commanded attention for its putative impact on the pathogenesis of invasive fungal infections. We evaluated in vitro and in vivo the dimorphism from mycelial to yeast-phase of Sporothrix schenckii, Blastomyces dermatitidis and Paracoccidioides brasiliensis isolates, two strains for each species, preserved in mineral oil. S. schenckii strains showed typical micromorphology at 25 °C but one strain was unable to complete the dimorphic process in vitro. After in vivo passage through mice the strains had the ability to turn into yeast-like cells and to form colonies on brain-heart infusion medium at 36 °C. B. dermatitidis strains grew as dirty white to brownish membranous colonies at 25 °C and their micromorphology showed thin filaments with single hyaline conidia. At 36 °C the colonies did not differ from those grown at 25 °C, but produced a transitional micromorphology. P. brasiliensis strains grew as cream-colored cerebriform colonies at 25 °C showing a transitional morphology. B. dermatitidis and P. brasiliensis strains did not turn into yeast-like cells in vivo. The present results demonstrate that B. dermatitidis and P. brasiliensis strains were unable to complete the dimorphic process even after in vivo passage, in contrast to the S. schenckii strain.Key words: pathogenic fungi, in vitro storage, in vivo passage, morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document