scholarly journals Morphology, gas exchange, and chlorophyll content of longleaf pine seedlings in response to rooting volume, copper root pruning, and nitrogen supply in a container nursery

New Forests ◽  
2013 ◽  
Vol 44 (6) ◽  
pp. 881-897 ◽  
Author(s):  
R. Kasten Dumroese ◽  
Shi-Jean Susana Sung ◽  
Jeremiah R. Pinto ◽  
Amy Ross-Davis ◽  
D. Andrew Scott
Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 807
Author(s):  
Shi-Jean S. Sung ◽  
R. Kasten Dumroese ◽  
Jeremiah R. Pinto ◽  
Mary Anne S. Sayer

In recent decades, container stock has become the preferred plant material to regenerate longleaf pine (Pinus palustris Mill.) forests in the southeastern United States. We evaluated the effects of container nursery treatments on early and long-term field performance in central Louisiana. Seedlings were grown in four cavity volumes (60–336 mL) with or without copper oxychloride root pruning (Cu or no-Cu) and fertilized at three nitrogen (N) rates. Across treatments, 91% of the seedlings emerged from the grass stage by the second field season, and 88% of the seedlings survived eight years after outplanting (Year 8). Seedlings grown in the largest cavities had greater total heights and stem diameters than those cultured in the 60- and 95-mL cavities through Year 8. Seedlings receiving the least amount of N in the nursery were consistently smaller in stature through Year 8 than seedlings receiving more N. Field growth was unaffected by copper root pruning through Year 8. Foliar mineral nutrient concentrations and seedling nutrient contents of Year 2 seedlings did not respond to nursery treatments. Independent of nursery treatments, seedlings excavated in Year 2 had at least 60% of their first-order lateral roots (FOLRs) originating from the top 4.0 cm of the taproots. The Cu-root-pruned seedlings had twofold the percentage of FOLRs egressed from the top 8.0 cm of the root plug when compared with the no-Cu seedlings. Moreover, the Cu root pruning treatment decreased the percentage of root plug biomass allocated to FOLRs, total within root plug FOLR lengths, and FOLR deformity index. The effects of increasing cavity volume or N rate on the root plug FOLR variables were opposite those of the Cu root pruning treatment. Our results suggest that a tradeoff may exist between seedling stature and a more natural FOLR morphology in outplanted container longleaf pine seedlings.


2020 ◽  
Vol 12 (10) ◽  
pp. 287
Author(s):  
Bruna N. Leite ◽  
Karla Gabrielle D. Pinto ◽  
Victor Alexandre H. F. dos Santos ◽  
Marciel J. Ferreira ◽  
Sônia Maria F. Albertino

The unsuitable use of herbicides damages many cultures. In cases of high infestations and presence of aggressive weed species in guarana (Paullinia cupana) culture, glyphosate application is advisable, but its impact on guarana physiology is unknown. Therefore, leaf photosynthetic characteristics were measured with the aim of identifying if the photosynthetic performance of guaranazeiro plants is affected in response to glyphosate application. Three glyphosate doses (0 (control); 324 and 432 g a.i. ha-1) were applied to two guaranazeiro cultivars (BRS-Andirá and BRS-Maués) selected on the basis of productive performance. An analysis was made of the effects of these doses on characteristics that represent the photosynthetic process: gas exchange, maximum quantum efficiency of PSII, performance index and chlorophyll content. The application of glyphosate did not affect the short-term responses relative chlorophyll content (SPAD index) and light use (chlorophyll a fluorescence). After 168 h, there were changes only in gas exchange variables. The effects of glyphosate doses on gas exchange was different between guaranazeiro cultivars. The photosynthetic performance of the guaranazeiro seems to be tolerant to the effects of short-term of glyphosate application.


1967 ◽  
Vol 45 (7) ◽  
pp. 961-971 ◽  
Author(s):  
S. Sasaki ◽  
T. T. Kozlowski

Experiments were conducted on effects of herbicides applied to soil or sprayed on shoots on CO2 uptake of 3-year-old Pinus resinosa Ait. seedlings. When applied to the soil, atrazine, monuron, EPTC, and 2,4-D at 20 lb/ac (soil surface basis) or at 4000 p.p.m. variously decreased absorption of CO2. Monuron checked gas exchange most rapidly, with no CO2 uptake measurable after 10 days. Atrazine and 2,4-D inhibited absorption of CO2 at a steady rate. EPTC caused a delayed inhibition of CO2 uptake. DCPA, CDAA, CDEC, and NPA did not affect gas exchange significantly. Monuron applied as a spray depressed CO2 uptake somewhat faster than the soil-applied herbicide. Very rapid inhibition of CO2 uptake was observed after spray application of 2,4-D or EPTC. Atrazine affected gas exchange similarly when applied as a spray or incorporated in the soil. DCPA, applied as a spray, did not affect absorption of CO2 significantly. Possible reasons for differences in CO2 uptake after spray and soil-application of certain herbicides are discussed. Inert ingredients of EPTC applied as sprays at a concentration of 4000 p.p.m. greatly reduced CO2 absorption 3 days after treatment. However, the rapid early depression of gas exchange was followed by recovery, with no obvious deleterious effects on growth up to 3 months after treatment. Some herbicides checked CO2 absorption without chlorophyll breakdown whereas others did not. Monuron completely inhibited CO2 uptake long before any changes in leaf color were evident. In contrast, depression of CO2 absorption by atrazine and 2,4-D rather closely paralleled development of toxicity symptoms, especially chlorosis. These observations suggested that some herbicides such as monuron affected the photosynthetic mechanism more directly than others such as atrazine, 2,4-D, and EPTC.


1990 ◽  
Vol 51 (1-2) ◽  
pp. 105-116 ◽  
Author(s):  
Woong S. Lee ◽  
Boris I. Chevone ◽  
John R. Seiler

1996 ◽  
Vol 20 (1) ◽  
pp. 5-9 ◽  
Author(s):  
John C. Brissette ◽  
James P. Barnett ◽  
John P. Jones

Abstract Seedlings of loblolly and longleaf pine lifted in December, January, and February were treated with either benomyl or ridomil before cold storage. Along with an untreated control, they were planted after cold storage of less than 1 wk, 3 wk, and 6 wk. Survival was measured in mid-June after planting, and after 1 and 4 yr in the field. Total height was measured after 4 yr. The fungicide application increased survival of both species lifted in December or February and was beneficial to longleaf pine seedlings regardless of storage duration. Fungicide-treated longleaf pine seedlings had greater mean 4 yr height than the controls, but fungicides did not affect the height of loblolly pine. South. J. Appl. For. 20(1): 5-9.


2019 ◽  
pp. 1959-1966
Author(s):  
Francisco Romário Andrade Figueiredo ◽  
Anderson Carlos de Melo Gonçalves ◽  
João Everthon da Silva Ribeiro ◽  
Toshik Iarley da Silva ◽  
Jackson Silva Nóbrega ◽  
...  

Salinity is one of the modern agriculture major obstacles, causing several physiological disturbances in plants, adversely affecting its growth and development. Therefore, some techniques are required in order to alleviate the negative effects of salinity stress on plants, as for example an adequate nitrogen fertilization. The aim of this study was to assess the ecophysiological responses of sugar apple plants (Annona squamosa L.) submitted to different salinity levels and nitrogen fertilization doses. The experimental design was a randomized block in an incomplete factorial scheme, with five electrical conductivities of the irrigation water (ECw: 0.5, 1.01, 2.25, 3.49 and 4.0 dS m-1) and five nitrogen doses (0, 101, 350, 598.2 and 700 mg dm-3), with four replicates, generated from the Box Central Composite experimental design matrix. Through a daily course, it was observed variations in gas exchange, chlorophyll content and fluorescence parameters. The gas exchange, chlorophyll content and fluorescence parameters were measured on photosynthetically active leaves. There was significant interaction between the salinity levels (ECw) and nitrogen doses for the chlorophyll indexes. The electrical conductivity of the irrigation water caused significant negative effects on chlorophyll fluorescence. Therefore, it can be stated that the sugar apple plants ecophysiology varies through the day and that salinity affects its chlorophyll content and fluorescence.


Sign in / Sign up

Export Citation Format

Share Document