scholarly journals Outstanding Nobility Observed in Cu5 Clusters Reveals the Key Role of Collective Quantum Effects

Author(s):  
David Buceta ◽  
Shahana Huseyinova ◽  
Miguel Cuerva ◽  
Héctor Lozano ◽  
Lisandro J. Giovanetti ◽  
...  

Subnanometer-sized metal clusters often feature a molecule-like electronic structure, which makes their physical and chemical properties significantly different from those of nanoparticles and bulk material. Considering potential applications, there is a major concern about their thermal stability and susceptibility towards oxidation. Cu clusters of only 5 atoms (Cu<sub>5</sub> clusters) are first synthesized in high concentration using a new-generation wet chemical method. Next, it is shown that, contrary to what is currently assumed, Cu<sub>5</sub> clusters display nobility, beyond resistance to irreversible oxidation, at a broad range of temperatures and oxygen pressures. The outstanding nobility arises from an unusual reversible oxidation which is observed by <i>in situ</i> X-ray Absorption Spectroscopy and X-ray Photoelectron Spectroscopy on Cu<sub>5</sub> clusters deposited onto highly oriented pyrolitic graphite at different oxygen pressures and up to 773 K. This atypical property is explained by a theoretical approach combining different state-of-the-art first principles theories. It reveals the essential role of collective quantum effects in the physical mechanism responsible for the nobility of Cu<sub>5</sub> clusters, encompassing a structural ‘breathing’ through concerted Cu–Cu elongations/contractions upon O<sub>2</sub> uptake/release, and collective charge transfer as well. A predictive phase diagram of their reversible oxidation states is also delivered, agreeing with the experimental observations. The collective quantum effects responsible of the observed nobility are expected to be general in subnanometer-sized metal clusters, pushing this new generation of materials to an upper level.

2021 ◽  
Author(s):  
David Buceta ◽  
Shahana Huseyinova ◽  
Miguel Cuerva ◽  
Héctor Lozano ◽  
Lisandro J. Giovanetti ◽  
...  

Subnanometer-sized metal clusters often feature a molecule-like electronic structure, which makes their physical and chemical properties significantly different from those of nanoparticles and bulk material. Considering potential applications, there is a major concern about their thermal stability and susceptibility towards oxidation. Cu clusters of only 5 atoms (Cu<sub>5</sub> clusters) are first synthesized in high concentration using a new-generation wet chemical method. Next, it is shown that, contrary to what is currently assumed, Cu<sub>5</sub> clusters display nobility, beyond resistance to irreversible oxidation, at a broad range of temperatures and oxygen pressures. The outstanding nobility arises from an unusual reversible oxidation which is observed by <i>in situ</i> X-ray Absorption Spectroscopy and X-ray Photoelectron Spectroscopy on Cu<sub>5</sub> clusters deposited onto highly oriented pyrolitic graphite at different oxygen pressures and up to 773 K. This atypical property is explained by a theoretical approach combining different state-of-the-art first principles theories. It reveals the essential role of collective quantum effects in the physical mechanism responsible for the nobility of Cu<sub>5</sub> clusters, encompassing a structural ‘breathing’ through concerted Cu–Cu elongations/contractions upon O<sub>2</sub> uptake/release, and collective charge transfer as well. A predictive phase diagram of their reversible oxidation states is also delivered, agreeing with the experimental observations. The collective quantum effects responsible of the observed nobility are expected to be general in subnanometer-sized metal clusters, pushing this new generation of materials to an upper level.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Loredana Schiavo ◽  
Lucrezia Aversa ◽  
Roberta Tatti ◽  
Roberto Verucchi ◽  
Gianfranco Carotenuto

Palladium nanoparticles are of great interest in many industrial fields, ranging from catalysis and hydrogen technology to microelectronics, thanks to their unique physical and chemical properties. In this work, palladium clusters have been prepared by reduction of [PdCl4]2−ions with ethylene glycol, in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) as stabilizer. The stabilizer performs the important role of nucleating agent for the Pd atoms with a fast phase separation, since palladium atoms coordinated to the polymer side-groups are forced at short distances during nucleation. Quasispherical palladium clusters with a diameter of ca. 2.6 nm were obtained by reaction in air at 90°C for 2 hours. An extensive materials characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and other characterizations (TGA, SEM, EDS-SEM, and UV-Vis) has been performed in order to evaluate the structure and oxidation state of nanopalladium.


Author(s):  
Emily C. Whipple ◽  
Camille A. Favero ◽  
Neal F. Kassell

Abstract Introduction Intra-arterial (lA) delivery of therapeutic agents across the blood-brain barrier (BBB) is an evolving strategy which enables the distribution of high concentration therapeutics through a targeted vascular territory, while potentially limiting systemic toxicity. Studies have demonstrated lA methods to be safe and efficacious for a variety of therapeutics. However, further characterization of the clinical efficacy of lA therapy for the treatment of brain tumors and refinement of its potential applications are necessary. Methods We have reviewed the preclinical and clinical evidence supporting superselective intraarterial cerebral infusion (SSJACI) with BBB disruption for the treatment of brain tumors. In addition, we review ongoing clinical trials expanding the applicability and investigating the efficacy of lA therapy for the treatment of brain tumors. Results Trends in recent studies have embraced the use of SSIACI and less neurotoxic chemotherapies. The majority of trials continue to use mannitol as the preferred method of hyperosmolar BBB disruption. Recent preclinical and preliminary human investigations into the lA delivery of Bevacizumab have demonstrated its safety and efficacy as an anti-tumor agent both alone and in combination with chemotherapy. Conclusion lA drug delivery may significantly affect the way treatment are delivered to patients with brain tumors, and in particular GBM. With refinement and standardization of the techniques of lA drug delivery, improved drug selection and formulations, and the development of methods to minimize treatment-related neurological injury, lA therapy may offer significant benefits for the treatment of brain tumors.


1999 ◽  
Vol 567 ◽  
Author(s):  
Masayuki Suzuki ◽  
Yoji Saito

ABSTRACTWe tried direct oxynitridation of silicon surfaces by remote-plasma-exited nitrogen and oxygen gaseous mixtures at 700°C in a high vacuum. The oxynitrided surfaces were investigated with in-situ X-ray photoelectron spectroscopy. With increase of the oxynitridation time, the surface density of nitrogen gradually increases, but that of oxygen shows nearly saturation behavior after the rapid increase in the initial stage. We also annealed the grown oxynitride and oxide films to investigate the role of the contained nitrogen. The desorption rate of oxygen from the oxynitride films is much less than that from oxide films. We confirmed that nitrogen stabilizes the thermal stability of these oxynitride films.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 992
Author(s):  
Song Chen ◽  
Yuanli He ◽  
Linna Zhong ◽  
Wenjia Xie ◽  
Yiyuan Xue ◽  
...  

The surface modification of titanium (Ti) can enhance the osseointegration and antibacterial properties of implants. In this study, we modified porous Ti discs with calcium phosphate (CaP) and different concentrations of Lactoferrin (LF) by biomimetic mineralization and examined their antibacterial effects and osteogenic bioactivity. Firstly, scanning electron microscopy (SEM), the fluorescent tracing method, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and the releasing kinetics of LF were utilized to characterize the modified Ti surface. Then, the antibacterial properties against S. sanguis and S. aureus were investigated. Finally, in vitro cytological examination was performed, including evaluations of cell adhesion, cell differentiation, extracellular matrix mineralization, and cytotoxicity. The results showed that the porous Ti discs were successfully modified with CaP and LF, and that the LF-M group (200 μg/mL LF in simulated body fluid) could mildly release LF under control. Further, the LF-M group could effectively inhibit the adhesion and proliferation of S. sanguis and S. aureus and enhance the osteogenic differentiation in vitro with a good biocompatibility. Consequently, LF-M-modified Ti may have potential applications in the field of dental implants to promote osseointegration and prevent the occurrence of peri-implantitis.


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Yang Dang ◽  
Yu Cheng ◽  
Yukun Zhou ◽  
Yifei Huang ◽  
Kaige Wang

The treatment of organic dye contaminants in wastewaters has now becoming more imperative. Fenton-like degradation of methylene blue (MB) and methyl orange (MO) in aqueous solution was investigated by using a nanostructure that a layer of CuCl2 nanoflake film grown on the top surface of nanoporus anodic alumina substrate (nano-PAA-CuCl2) as catalyst. The new nano-PAA-CuCl2 composite was fabricated with self-assembly approach, that is, a network porous structure film composed of CuCl2 nanoflake grown on the upper surface of nanoporous anodic alumina substrate, and the physical and chemical properties are characterized systematically with the X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscopy (HRTEM), Energy Dispersive Spectrometer (EDS), X-ray photoelectron spectroscopy (XPS). The experimental results showed that the nano-PAA-CuCl2 catalyst presented excellent properties for the degradation of two typical organic pollutants such as MB and MO, which were almost completely degraded with 8 × 10−4mol/L nano-PAA-CuCl2 catalyst after 46 min and 60 min at reaction conditions of H2O2 18 mM and 23 mM, respectively. The effects of different reaction parameters such as initial pH, H2O2 concentration, catalyst morphology and temperature were attentively studied. And more, the stability and reusability of nano-PAA-CuCl2 were examined. Finally, the mechanism of MB and MO degradation by the nano-PAA-CuCl2/H2O2 system was proposed, based on the experimental data of the BCA and the temperature-programmed reduction (H2-TPR) and theoretical analysis, the reaction kinetics belonged to the pseudo-first-order equation. This new nanoporous composite material and preparation technology, as well as its application in Fenton-like reaction, provide an effective alternative method with practical application significance for wastewater treatment.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1378 ◽  
Author(s):  
Zafar Ibupoto ◽  
Aneela Tahira ◽  
Hamid Raza ◽  
Gulzar Ali ◽  
Aftab Khand ◽  
...  

It is always demanded to prepare a nanostructured material with prominent functional properties for the development of a new generation of devices. This study is focused on the synthesis of heart/dumbbell-like CuO nanostructures using a low-temperature aqueous chemical growth method with vitamin B12 as a soft template and growth directing agent. CuO nanostructures are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. CuO nanostructures are heart/dumbbell like in shape, exhibit high crystalline quality as demonstrated by XRD, and have no impurity as confirmed by XPS. Apparently, CuO material seems to be porous in structure, which can easily carry large amount of enzyme molecules, thus enhanced performance is shown for the determination of uric acid. The working linear range of the biosensor is 0.001 mM to 10 mM with a detection limit of 0.0005 mM and a sensitivity of 61.88 mV/decade. The presented uric acid biosensor is highly stable, repeatable, and reproducible. The analytical practicality of the proposed uric acid biosensor is also monitored. The fabrication methodology is inexpensive, simple, and scalable, which ensures the capitalization of the developed uric acid biosensor for commercialization. Also, CuO material can be used for various applications such as solar cells, lithium ion batteries, and supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document