scholarly journals Characterizing spatiotemporal trends in extreme precipitation in Southeast Texas

2020 ◽  
Vol 104 (2) ◽  
pp. 1597-1621
Author(s):  
Carlynn Fagnant ◽  
Avantika Gori ◽  
Antonia Sebastian ◽  
Philip B. Bedient ◽  
Katherine B. Ensor

Abstract Rainfall extreme value analysis provides information that has been crucial in characterizing risk, designing successful infrastructure systems, and ultimately protecting people and property from the threat of rainfall-induced flooding. However, in the Houston region recent events (such as the unprecedented rainfall wrought by Hurricane Harvey) have highlighted the inability of existing analyses to accurately characterize current climate conditions. Specifically, there has been little research investigating how spatial patterns of extreme precipitation have shifted through time in the Texas Gulf Coast region, which has led to mis-characterization of existing intensity–duration–frequency curves. This study investigates spatiotemporal trends in extreme precipitation in southeast Texas using a statistical approach for peaks-over-threshold modeling that employs a generalized Pareto distribution. Precipitation data from over 600 rain gauges across the region are analyzed in 40-year time windows to evaluate shifts in distribution parameters and extreme rainfall levels through time. Spatial analysis of these trends focuses on highlighting regions with increasing, stationary, and decreasing extreme rainfall through time. Results demonstrate heterogeneity in spatiotemporal trends across the entire study region, but significant increases in extreme rainfall over the Houston urban area. Spatial analysis of these trends focuses on how extreme rainfall has changed within different watersheds. Return level estimates of extreme rainfall values are also compared to the current standards for Harris County. Results from this study identify areas that have experienced significant shifts in extreme rainfall, and can help inform where design standards may be inaccurate or outdated.

Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1273
Author(s):  
Tosiyuki Nakaegawa ◽  
Takuro Kobashi ◽  
Hirotaka Kamahori

Extreme precipitation is no longer stationary under a changing climate due to the increase in greenhouse gas emissions. Nonstationarity must be considered when realistically estimating the amount of extreme precipitation for future prevention and mitigation. Extreme precipitation with a certain return level is usually estimated using extreme value analysis under a stationary climate assumption without evidence. In this study, the characteristics of extreme value statistics of annual maximum monthly precipitation in East Asia were evaluated using a nonstationary historical climate simulation with an Earth system model of intermediate complexity, capable of long-term integration over 12,000 years (i.e., the Holocene). The climatological means of the annual maximum monthly precipitation for each 100-year interval had nonstationary time series, and the ratios of the largest annual maximum monthly precipitation to the climatological mean had nonstationary time series with large spike variations. The extreme value analysis revealed that the annual maximum monthly precipitation with a return level of 100 years estimated for each 100-year interval also presented a nonstationary time series which was normally distributed and not autocorrelated, even with the preceding and following 100-year interval (lag 1). Wavelet analysis of this time series showed that significant periodicity was only detected in confined areas of the time–frequency space.


2021 ◽  
Author(s):  
Jeremy Rohmer ◽  
Rodrigo Pedreros ◽  
Yann Krien

<p>To estimate return levels of wave heights (Hs) induced by tropical cyclones at the coast, a commonly-used approach is to (1) randomly generate a large number of synthetic cyclone events (typically >1,000); (2) numerically simulate the corresponding Hs over the whole domain of interest; (3) extract the Hs values at the desired location at the coast and (4) perform the local extreme value analysis (EVA) to derive the corresponding return level. Step 2 is however very constraining because it often involves a numerical hydrodynamic simulator that can be prohibitive to run: this might limit the number of results to perform the local EVA (typically to several hundreds). In this communication, we propose a spatial stochastic simulation procedure to increase the database size of numerical results with synthetic maps of Hs that are stochastically generated. To do so, we propose to rely on a data-driven dimensionality-reduction method, either unsupervised (Principal Component Analysis) or supervised (Partial Least Squares Regression), that is trained with a limited number of pre-existing numerically simulated Hs maps. The procedure is applied to the Guadeloupe island and results are compared to the commonly-used approach applied to a large database of Hs values computed for nearly 2,000 synthetic cyclones (representative of 3,200 years – Krien et al., NHESS, 2015). When using only a hundred of cyclones, we show that the estimates of the 100-year return levels can be achieved with a mean absolute percentage error (derived from a bootstrap-based procedure) ranging between 5 and 15% around the coasts while keeping the width of the 95% confidence interval of the same order of magnitude than the one using the full database. Without synthetic Hs maps augmentation, the error and confidence interval width are both increased by nearly 100%. A careful attention is paid to the tuning of the approach by testing the sensitivity to the spatial domain size, the information loss due to data compression, and the number of cyclones. This study has been carried within the Carib-Coast INTERREG project (https://www.interreg-caraibes.fr/carib-coast).</p>


2017 ◽  
Author(s):  
Edouard Goudenhoofdt ◽  
Laurent Delobbe ◽  
Patrick Willems

Abstract. In Belgium, only rain gauge time-series have been used so far to study extreme precipitation at a given location. In this paper, the potential of a 12-year quantitative precipitation estimation (QPE) from a single weather radar is evaluated. For the period 2005–2016, independent sliding 1 h and 24 h rainfall extremes from automatic rain gauges and collocated radar estimates are compared. The extremes are fitted to the exponential distribution using regression in QQ-plots with a threshold rank which minimises the mean squared error. A basic radar product used as reference exhibits unrealistic high extremes and is not suitable for extreme value analysis. For 24 h rainfall extremes, which occur partly in winter, the radar-based QPE needs a bias correction. A few missing events are caused by the wind drift of convective cells and strong radar signal attenuation. Differences between radar and gauge values are caused by spatial and temporal sampling, gauge rainfall underestimations and radar errors due to the relation between reflectivity and rain rate. Nonetheless the fit to the QPE data is within the confidence interval of the gauge fit, which remains large due to the short study period. A regional frequency analysis is performed on radar data within 20 km of the locations of 4 rain gauges with records from 1965 to 2008. Assuming that the extremes are correlated within the region, the fit to the two closest rain gauge data is within the confidence interval of the radar fit, which is small due to the sample size. In Brussels, the extremes on the period 1965–2008 from a rain gauge are significantly lower than the extremes from an automatic gauge and the radar on the period 2005–2016. For 1 h duration, the location parameter varies slightly with topography and the scale parameter exhibits some variations from region to region. The radar-based extreme value analysis can be extended to other durations.


Author(s):  
Lu Deng ◽  
Zhengjun Zhang

Extreme smog can have potentially harmful effects on human health, the economy and daily life. However, the average (mean) values do not provide strategically useful information on the hazard analysis and control of extreme smog. This article investigates China's smog extremes by applying extreme value analysis to hourly PM2.5 data from 2014 to 2016 obtained from monitoring stations across China. By fitting a generalized extreme value (GEV) distribution to exceedances over a station-specific extreme smog level at each monitoring location, all study stations are grouped into eight different categories based on the estimated mean and shape parameter values of fitted GEV distributions. The extreme features characterized by the mean of the fitted extreme value distribution, the maximum frequency and the tail index of extreme smog at each location are analysed. These features can provide useful information for central/local government to conduct differentiated treatments in cities within different categories and conduct similar prevention goals and control strategies among those cities belonging to the same category in a range of areas. Furthermore, hazardous hours, breaking probability and the 1-year return level of each station are demonstrated by category, based on which the future control and reduction targets of extreme smog are proposed for the cities of Beijing, Tianjin and Hebei as an example.


2017 ◽  
Vol 21 (10) ◽  
pp. 5385-5399 ◽  
Author(s):  
Edouard Goudenhoofdt ◽  
Laurent Delobbe ◽  
Patrick Willems

Abstract. In Belgium, only rain gauge time series have been used so far to study extreme rainfall at a given location. In this paper, the potential of a 12-year quantitative precipitation estimation (QPE) from a single weather radar is evaluated. For the period 2005–2016, 1 and 24 h rainfall extremes from automatic rain gauges and collocated radar estimates are compared. The peak intensities are fitted to the exponential distribution using regression in Q-Q plots with a threshold rank which minimises the mean squared error. A basic radar product used as reference exhibits unrealistic high extremes and is not suitable for extreme value analysis. For 24 h rainfall extremes, which occur partly in winter, the radar-based QPE needs a bias correction. A few missing events are caused by the wind drift associated with convective cells and strong radar signal attenuation. Differences between radar and gauge rainfall values are caused by spatial and temporal sampling, gauge underestimations and radar errors. Nonetheless the fit to the QPE data is within the confidence interval of the gauge fit, which remains large due to the short study period. A regional frequency analysis for 1 h duration is performed at the locations of four gauges with 1965–2008 records using the spatially independent QPE data in a circle of 20 km. The confidence interval of the radar fit, which is small due to the sample size, contains the gauge fit for the two closest stations from the radar. In Brussels, the radar extremes are significantly higher than the gauge rainfall extremes, but similar to those observed by an automatic gauge during the same period. The extreme statistics exhibit slight variations related to topography. The radar-based extreme value analysis can be extended to other durations.


2020 ◽  
Author(s):  
Kirien Whan ◽  
Jana Sillmann ◽  
Nathalie Schaller ◽  
Rein Haarsma

<p>Atmospheric rivers (AR) are associated with flooding events in Norway, like the flood that impacted Flåm in 2014. We assess trends in Norwegian AR characteristics, and the influence of AR variability on extreme precipitation in Norway. After evaluating the global climate model, EC-Earth, compared to the ERA-Interim reanalysis, we show that ARs increase in both intensity and frequency by the end of the century. In two regions on the west coast, the majority of winter precipitation maxima are associated with AR events (> 80% of cases). A non-stationary extreme value analysis indicates that the magnitude of extreme precipitation events in these regions is associated with AR intensity. Indeed, the 1-in-20 year extreme event is 17% larger when the AR-intensity is high, compared to when it is low. Finally, we find that the region mean temperature during winter AR events increases in the future. In the future, when the climate is generally warmer, AR days will tend to make landfall when the temperature is above the freezing point. The partitioning of more precipitation as rain, rather than snow, can have severe impacts on flooding and water resource management in Norway.</p>


2019 ◽  
Vol 276 ◽  
pp. 04006
Author(s):  
Md Ashraful Alam ◽  
Craig Farnham ◽  
Kazuo Emura

In Bangladesh, major floods are frequent due to its unique geographic location. About one-fourth to one-third of the country is inundated by overflowing rivers during the monsoon season almost every year. Calculating the risk level of river discharge is important for making plans to protect the ecosystem and increasing crop and fish production. In recent years, several Bayesian Markov chain Monte Carlo (MCMC) methods have been proposed in extreme value analysis (EVA) for assessing the flood risk in a certain location. The Hamiltonian Monte Carlo (HMC) method was employed to obtain the approximations to the posterior marginal distribution of the Generalized Extreme Value (GEV) model by using annual maximum discharges in two major river basins in Bangladesh. The discharge records of the two largest branches of the Ganges-Brahmaputra-Meghna river system in Bangladesh for the past 42 years were analysed. To estimate flood risk, a return level with 95% confidence intervals (CI) has also been calculated. Results show that, the shape parameter of each station was greater than zero, which shows that heavy-tailed Frechet cases. One station, Bahadurabad, at Brahmaputra river basin estimated 141,387 m3s-1 with a 95% CI range of [112,636, 170,138] for 100-year return level and the 1000-year return level was 195,018 m3s-1 with a 95% CI of [122493, 267544]. The other station, Hardinge Bridge, at Ganges basin estimated 124,134 m3 s-1 with a 95% CI of [108,726, 139,543] for 100-year return level and the 1000-year return level was 170,537 m3s-1 with a 95% CI of [133,784, 207,289]. As Bangladesh is a flood prone country, the approach of Bayesian with HMC in EVA can help policy-makers to plan initiatives that could result in preventing damage to both lives and assets.


2021 ◽  
Author(s):  
Katharina Klehmet ◽  
Peter Berg ◽  
Denica Bozhinova ◽  
Louise Crochemore ◽  
Ilias Pechlivanidis ◽  
...  

<p>Robust information of hydrometeorological extremes is important for effective risk management, mitigation and adaptation measures by public authorities, civil and engineers dealing for example with water management. Typically, return values of certain variables, such as extreme precipitation and river discharge, are of particular interest and are modelled statistically using Extreme Value Theory (EVT). However, the estimation of these rare events based on extreme value analysis are affected by short observational data records leading to large uncertainties.</p><p>In order to overcome this limitation, we propose to use the latest seasonal meteorological prediction system of the European Centre for Medium-Range Weather Forecasts (ECMWF SEAS5) and seasonal hydrological forecasts generated with the pan-European E-HYPE model of the original period 1993-2015 and to extend the dataset to longer synthetic time series by pooling single forecast months to surrogate years. To ensure an independent dataset, the seasonal forecast skill is assessed in advance and months (and lead months) with positive skill are excluded. In this study, we simplify the method and work with samples of 6- and 4-month forecasts (instead of the full 7-month forecasts) depending on the statistical independency of the variables. It enables the record to be extended from the original 23 years to 3450 and 2300 surrogate years for the 6- and 4-month forecasts respectively.</p><p>Furthermore, we investigate the robustness of estimated 50- and 100-year return values for extreme precipitation and river discharge using 1-year block maxima that are fitted to the Generalized Extreme Value distribution. Surrogate sets of pooled years are randomly constructed using the Monte-Carlo approach and different sample sizes are chosen. This analysis reveals a considerable reduction in the uncertainty of all return period estimations for both variables for selected locations across Europe using a sample size of 500 years. This highlights the potential in using the ensembles of meteorological and hydrological seasonal forecasts to obtain timeseries of sufficient length and minimize the uncertainty in the extreme value analysis.</p>


2018 ◽  
Vol 150 ◽  
pp. 05025
Author(s):  
Nor Azrita Mohd Amin ◽  
Siti Aisyah Zakaria

The main concern in environmental issue is on extreme phenomena (catastrophic) instead of common events. However, most statistical approaches are concerned primarily with the centre of a distribution or on the average value rather than the tail of the distribution which contains the extreme observations. The concept of extreme value theory affords attention to the tails of distribution where standard models are proved unreliable to analyse extreme series. High level of particulate matter (PM10) is a common environmental problem which causes various impacts to human health and material damages. If the main concern is on extreme events, then extreme value analysis provides the best result with significant evidence. The monthly average and monthly maxima PM10 data for Perlis from 2003 to 2014 were analysed. Forecasting for average data is made by Holt-Winters method while return level determine the predicted value of extreme events that occur on average once in a certain period. The forecasting from January 2015 to December 2016 for average data found that the highest forecasted value is 58.18 (standard deviation 18.45) on February 2016 while return level achieved 253.76 units for 24 months (2015-2016) return periods.


2007 ◽  
Vol 46 (10) ◽  
pp. 1501-1522 ◽  
Author(s):  
Allan W. MacAfee ◽  
Samuel W. K. Wong

Abstract Many of the extreme ocean wave events generated by tropical cyclones (TCs) can be explained by examining one component of the spectral wave field, the trapped-fetch wave (TFW). Using a Lagrangian TFW model, a parametric model representation of the local TC wind fields, and the National Hurricane Center’s hurricane database archive, a dataset of TFWs was created from all TCs in the Atlantic Ocean, Gulf of Mexico, and Caribbean Sea from 1851 to 2005. The wave height at each hourly position along a TFW trajectory was sorted into 2° × 2° latitude–longitude grid squares. Five grid squares (north of Hispaniola, Gulf of Mexico, Carolina coast, south of Nova Scotia, and south of Newfoundland) were used to determine if extreme value theory could be applied to the extremes in the TFW dataset. The statistical results justify accepting that a generalized Pareto distribution (GPD) model with a threshold of 6 m could be fitted to the data: the datasets were mostly modeled adequately, and much of the output information was useful. Additional tests were performed by sorting the TFW data into the marine areas in Atlantic Canada, which are of particular interest to the Meteorological Service of Canada because of the high ocean traffic, offshore drilling activities, and commercial fishery. GPD models were fitted, and return periods and the 95% confidence intervals (CIs) for 10-, 15-, and 20-m return levels were computed. The results further justified the use of the GPD model; hence, extension to the remaining grid squares was warranted. Of the 607 grid squares successfully modeled, the percentage of grid squares with finite lower (upper) values for the 10-, 15-, and 20-m return level CIs were 100 (80), 94 (53), and 90 (16), respectively. The lower success rate of 20-m TFW CIs was expected, given the rarity of 20-m TFWs: of the 5 713 625 hourly TFW points, only 13 958, or 0.24%, were 20 m or higher. Overall, the distribution of the successfully modeled grid squares in the data domain agreed with TFW theory and TC climatology. As a direct result of this study, the summary datasets and return level plots were integrated into application software for use by risk managers. A description of the applications illustrates their use in addressing various questions on extreme TFWs.


Sign in / Sign up

Export Citation Format

Share Document