Effects of water stress on photosynthetic activity, dry mass partitioning and some associated metabolic changes in four provenances of neem (Azadirachta indica A. Juss)

2010 ◽  
Vol 48 (3) ◽  
pp. 361-369 ◽  
Author(s):  
Y. X. Zheng ◽  
J. C. Wu ◽  
F. L. Cao ◽  
Y. P. Zhang
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 474d-474
Author(s):  
N.K. Damayanthi Ranwala ◽  
Dennis R. Decoteau

This study was conducted to evaluate the spectral properties of various colored plastic color mulches and to determine the effects of upwardly reflected light from the mulch surfaces on watermelon plant growth when differences in root zone temperatures are minimized. Two-week-old watermelon plants were grown with black mulch, red-painted mulch, SRM-Red mulch (Sonoco, Inc., Harstville, S.C.), and white mulch. Total light reflection (58 μmol·m–2·s–1 in 400–700 nm) and red: far-red (R:FR = 0.44) of reflected light were lower in black mulch and highest in white mulch (634 and 0.92, respectively). Both black mulch and white mulch had same blue:red (B:R = 0.6) while white mulch had higher B:FR (0.58) in reflected light compared to black mulch (0.26). Reflective properties of red mulches were somewhat similar, and R:FR, B:R, and B:FR were 0.8, 0.2, and 0.18, respectively. However, SRM-Red mulch had highest total light (355 μmol·m–2·s–1 in 400–700 nm) transmission through the mulch, and R:FR, B:R, and B:FR were 0.84, 0.28, and 0.23, respectively. Light transmission through the other mulches was nonsignificant. Watermelon plants grown with black mulch and red mulches had higher internode lengths compared to white mulch after 20 days. Further, plants grown under black had significant higher petiole elongation accompanied with higher dry mass partitioning to petioles, and lower partitioning to roots, stems, and leaves. There was no effects of surface mulch color on total plant dry mass or photosynthesis although plants with black had higher transpiration rate. This suggests the differential regulation of dry mass partitioning among plant parts due to mulch color. The similar plant responses with black mulch and white mulch to plants treated with FR or R light at the end of photoperiod implies the involvement of phytochrome regulation of growth due to mulch surface color.


2002 ◽  
Vol 29 (11) ◽  
pp. 1319 ◽  
Author(s):  
Corine C. de Groot ◽  
Leo F. M. Marcelis ◽  
Riki van den Boogaard ◽  
Hans Lambers

The interactive effects of irradiance and N on growth of young tomato plants (Lycopersicon esculentum Mill.) were studied. Plants were grown at 70 or 300 μmol photons m–2 s–1, hereafter referred to as 'low' and 'high' irradiance, and at a range of exponential N supply rates (70–370 mg g–1 d–1) or at a constant concentration in the nutrient solution of 12 mM NO3–. At both irradiance levels, leaf area ratio was more important than net assimilation rate (NAR) in explaining effects of N on growth at mild N limitation. However, at severe N limitation, NAR became the most important parameter, as indicated by calculated growth response coefficients. Furthermore, this study shows that N supply and growth irradiance interacted strongly. The decrease of specific leaf area with increasing N limitation and increasing growth irradiance correlated with increasing leaf dry mass percentage and starch concentration. Furthermore, at low irradiance, plants partitioned more dry mass to the stem. Dry mass partitioning to roots increased with decreasing plant N concentration, and this relation appeared to be independent of irradiance. Shading increased plant N concentration and decreased dry mass partitioning to roots. Also, the relationship between plant N concentration and N partitioning to different plant organs was largely independent of growth irradiance.


2014 ◽  
Vol 23 (4) ◽  
pp. 480 ◽  
Author(s):  
W. Matt Jolly ◽  
Ann M. Hadlow ◽  
Kathleen Huguet

Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples from Pinus contorta for two growing seasons and quantified their LFMC, relative water content (RWC) and dry matter chemistry. LFMC quantifies the amount of water per unit fuel dry weight whereas RWC quantifies the amount of water in the fuel relative to how much water the fuel can hold at saturation. RWC is generally a better indicator of water stress than is LFMC. We separated water mass from dry mass for each sample and we attempted to best explain the seasonal variations in each using our measured physiochemical variables. We found that RWC explained 59% of variation in foliar water mass. Additionally, foliar starch, sugar and crude fat content explained 87% of the variation in seasonal dry mass changes. These two models combined explained 85% of the seasonal variations in LFMC. These results demonstrate that changes to dry matter exert a stronger control on seasonal LFMC dynamics than actual changes in water content, and they challenge the assumption that LFMC variations are strongly related to water stress. This methodology could be applied across a range of plant functional types to better understand the factors that drive seasonal changes in LFMC and live fuel flammability.


2019 ◽  
Vol 168 ◽  
pp. 103889 ◽  
Author(s):  
Yongran Ji ◽  
Theoharis Ouzounis ◽  
Sarah Courbier ◽  
Elias Kaiser ◽  
Phuong T. Nguyen ◽  
...  

2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Anna Paula Lora Zimmermann ◽  
Frederico Dimas Fleig ◽  
Luciane Almeri Tabaldi ◽  
Suelen Carpenedo Aimi

ABSTRACT This work was carried out to verify the plasticity of saplings of Cabralea canjerana plants and their capacity to adapt to different light environments by means of morphological and physiological characteristics. For this, 12 plants of a secondary Deciduous Seasonal Forest fragment were selected, six growing under canopy and six in full sun. Trees were classified according to their sociological position as emergent and dominated. The leaves were classified as apical, intermediate and basal according to their position in the canopy. The variables measured were: total number of leaves, width, length, thickness, leaf area and dry mass of leaflets; content of chlorophyll a and b and carotenoids. Emergent leaflets of the upper position of the canopy in full sun, which are considered the most exposed to luminosity, presented xeromorphic characteristics such as leaflet size reduction, greater limbus thickness, smaller leaf area and lower content of chlorophyll b. The similarity in the dry mass and pigment content demonstrates that the photosynthetic activity of the C. canjerana plants analyzed is not being affected by the different conditions of the environment, which demonstrates the plasticity of the species and its capacity of development in several light conditions.


2017 ◽  
Vol 35 (0) ◽  
Author(s):  
M.R.R. PEREIRA ◽  
A.R. MARTINS ◽  
D. MARTINS ◽  
G. SASSO ◽  
A.C. SILVA JR

ABSTRACT The goal of this study was to analyze the leaf anatomy and physiological behavior of Brachiaria grass plants (Urochloa decumbens) under different water conditions and with the application of sethoxydim herbicide. The used experimental design was the completely randomized one, with four replications, consisting of a 3 x 2 factorial scheme, with the combination of three water managements (-0.03, -0.07 and -1.5 MPa) with and without the application of sethoxydim herbicide + Assist mineral oil, at the recommended dose for the species (184 g a.i. ha-1). The assessed physiological and anatomicalal parameters were photosynthetic rate, stomatal conductance, transpiration, difference between leaf and room temperature, dry mass of plants, thickness of bulliform cells, adaxial and total epidermis. Under the conditions in which the experiment was conducted, it appears that Brachiaria grass leaves showed uniseriate epidermis, homogenous mesophyll, with radiated distribution of parenchymal cells around the vascular bundles. The adaxial epidermis presented bulliform cells; the vascular bundles are collateral and are present in different sizes. Water stress had a negative influence on herbicide effectiveness and decreased all physiological parameters. The application of the herbicide caused anatomical changes in plants with no water stress (-0.03 MPa), such as limitations in the growth of epidermic and bulliform cells, and in the total leaf thickness. However, in treatments with stress (-0.07 and -1.5 MPa), there were no differences in leaf anatomy, but an increase in the total thickness of leaves, probably as a result of the water stress conditions to which plants were submitted..


Sign in / Sign up

Export Citation Format

Share Document