Nonlinear Heating System of Modular-Pouring and Platform Furnaces for Firing Bulk Materials

Author(s):  
A. I. Nizhegorodov
Author(s):  
A. I. Nizhegorodov

The design of the suspended nonlinear heating system of modular-trigger and platform furnaces for firing vermiculite and other bulk materials is considered. Previously, the design of linear heating systems did not provide homogeneous heating of thermographed materials, the material in the clutch zones suffered sufficient thermal energy. In addition, overheating of the central zone increased the frequency of the impact of the heaters themselves, which affected the reliability of the furnace. The use of a nonlinear heating system has changed this distribution to the opposite. The power of the intuboxic heater exceeded the power of the central 1,2‒1,36 times depending on the ratio of the diameters of thin and thick (diameter of 4 mm) of the heaters. At the same time, not only their electrical power increased, but the heat radiation streams, falling onto the surface of the supply, which led to an increase in the temperature of the material being processed. The obtained values of the temperature of the vermiculite grains in the fitted zones of the firing module exceed the temperature of the vermiculite in the central zone by 26 %, while it is sufficient for high-quality material intimidation. Due to the use of nonlinear heating system, temperatures were redistributed on heated surfaces in favor of relatively cold previously intuition zones: the heat picture has changed to the opposite, that is, the cold cloth zones have become relatively hot. Ill. 8. Ref. 14.


Author(s):  
Robert M. Fisher

By 1940, a half dozen or so commercial or home-built transmission electron microscopes were in use for studies of the ultrastructure of matter. These operated at 30-60 kV and most pioneering microscopists were preoccupied with their search for electron transparent substrates to support dispersions of particulates or bacteria for TEM examination and did not contemplate studies of bulk materials. Metallurgist H. Mahl and other physical scientists, accustomed to examining etched, deformed or machined specimens by reflected light in the optical microscope, were also highly motivated to capitalize on the superior resolution of the electron microscope. Mahl originated several methods of preparing thin oxide or lacquer impressions of surfaces that were transparent in his 50 kV TEM. The utility of replication was recognized immediately and many variations on the theme, including two-step negative-positive replicas, soon appeared. Intense development of replica techniques slowed after 1955 but important advances still occur. The availability of 100 kV instruments, advent of thin film methods for metals and ceramics and microtoming of thin sections for biological specimens largely eliminated any need to resort to replicas.


Author(s):  
Daniel UGARTE

Small particles exhibit chemical and physical behaviors substantially different from bulk materials. This is due to the fact that boundary conditions can induce specific constraints on the observed properties. As an example, energy loss experiments carried out in an analytical electron microscope, constitute a powerful technique to investigate the excitation of collective surface modes (plasmons), which are modified in a limited size medium. In this work a STEM VG HB501 has been used to study the low energy loss spectrum (1-40 eV) of silicon spherical particles [1], and the spatial localization of the different modes has been analyzed through digitally acquired energy filtered images. This material and its oxides have been extensively studied and are very well characterized, because of their applications in microelectronics. These particles are thus ideal objects to test the validity of theories developed up to now.Typical EELS spectra in the low loss region are shown in fig. 2 and energy filtered images for the main spectral features in fig. 3.


Author(s):  
YIQUN MA

For a long time, the development of dynamical theory for HEER has been stagnated for several reasons. Although the Bloch wave method is powerful for the understanding of physical insights of electron diffraction, particularly electron transmission diffraction, it is not readily available for the simulation of various surface imperfection in electron reflection diffraction since it is basically a method for bulk materials and perfect surface. When the multislice method due to Cowley & Moodie is used for electron reflection, the “edge effects” stand firmly in the way of reaching a stationary solution for HEER. The multislice method due to Maksym & Beeby is valid only for an 2-D periodic surface.Now, a method for solving stationary solution of HEER for an arbitrary surface is available, which is called the Edge Patching method in Multislice-Only mode (the EPMO method). The analytical basis for this method can be attributed to two important characters of HEER: 1) 2-D dependence of the wave fields and 2) the Picard iteractionlike character of multislice calculation due to Cowley and Moodie in the Bragg case.


2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


2003 ◽  
Vol 775 ◽  
Author(s):  
Tsuyoshi Kijima ◽  
Kenichi Iwanaga ◽  
Tomomi Hamasuna ◽  
Shinji Mohri ◽  
Mitsunori Yada ◽  
...  

AbstractEuropium-doped hexagonal-mesostructured and nanotubular yttrium oxides templated by dodecylsulfate species as well as surfactant free bulk oxides were synthesized by the homogeneous precipitation method. All the as grown nanostructured or bulk materials with amorphous or poorly crystalline frameworks showed weak luminescence bands at room temperature. On calcination at 1000°C these materials were converted into highly crystalline yttrium oxides, resulting in a total increase in intensity of all the bands by one order of magnitude. In the hexagonal-mesostructured system, the main band due to the 5D0-7F2 transition for the calcined phases showed a sharp but asymmetrical multiplet splitting indicating multiple Eu sites. Concentration quenching was found at a Eu content of 3 mol% or above for these phases. In contrast, the main emission for the calcined solids in the nanotubular system occurred as poorly resolved broad band and the intensity of the main band at higher Eu content was significantly enhanced compared with those for the other two systems.


Sign in / Sign up

Export Citation Format

Share Document