Formation of Structural, Physical and Adhesion Properties in Calcium-Phosphate Biocoatings in the Course of Microarc Oxidation Using Fe–Cu Nanocomposite Particles

Author(s):  
V. V. Chebodaeva ◽  
M. B. Sedelnikova ◽  
O. V. Bakina ◽  
Yu. P. Sharkeev
Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4307
Author(s):  
Larisa S. Litvinova ◽  
Olga G. Khaziakhmatova ◽  
Valeria V. Shupletsova ◽  
Kristina A. Yurova ◽  
Vladimir V. Malashchenko ◽  
...  

Calcium phosphate (CaP) materials are among the best bone graft substitutes, but their use in the repair of damaged bone in tumor patients is still unclear. The human Jurkat T lymphoblast leukemia-derived cell line (Jurkat T cells) was exposed in vitro to a titanium (Ti) substrate (10 × 10 × 1 mm3) with a bilateral rough (average roughness index (Ra) = 2–5 μm) CaP coating applied via the microarc oxidation (MAO) technique, and the morphofunctional response of the cells was studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscope (EDX) analyses showed voltage-dependent (150–300 V) growth of structural (Ra index, mass, and thickness) and morphological surface and volume elements, a low Ca/PaT ratio (0.3–0.6), and the appearance of crystalline phases of CaHPO4 (monetite) and β-Ca2P2O7 (calcium pyrophosphate). Cell and molecular reactions in 2-day and 14-day cultures differed strongly and correlated with the Ra values. There was significant upregulation of hTERT expression (1.7-fold), IL-17 secretion, the presentation of the activation antigens CD25 (by 2.7%) and CD95 (by 5.15%) on CD4+ cells, and 1.5–2-fold increased cell apoptosis and necrosis after two days of culture. Hyperactivation-dependent death of CD4+ cells triggered by the surface roughness of the CaP coating was proposed. Conversely, a 3.2-fold downregulation in hTERT expression increased the percentages of CD4+ cells and their CD95+ subset (by 15.5% and 22.9%, respectively) and inhibited the secretion of 17 of 27 test cytokines/chemokines without a reduction in Jurkat T cell survival after 14 days of coculture. Thereafter, cell hypoergy and the selection of an hTERT-independent viable CD4+ subset of tumor cells were proposed. The possible role of negative zeta potentials and Ca2+ as effectors of CaP roughness was discussed. The continuous (2–14 days) 1.5–6-fold reductions in the secretion of vascular endothelial growth factor (VEGF) by tumor cells correlated with the Ra values of microarc CaP-coated Ti substrates seems to limit surgical stress-induced metastasis of lymphoid malignancies.


Nano Letters ◽  
2008 ◽  
Vol 8 (12) ◽  
pp. 4116-4121 ◽  
Author(s):  
Mark Kester ◽  
Yasser Heakal ◽  
Todd Fox ◽  
Arati Sharma ◽  
Gavin P. Robertson ◽  
...  

2021 ◽  
pp. 69-74

This paper discusses some properties of bioceramic bilayer coatings on Ti-6Al-4V substrates obtained by an integrated technology including microarc oxidation and detonation spraying of calcium phosphate (Ca-P) layers. Ca-P coatings were deposited from feedstock HAp parti-cles. As a result, bilayer systems were obtained: TiO2 (with a thickness of  2–3 μm) and sub-sequent Ca-P (with a thickness of  100–150 μm) coatings. These coatings were characterized by SEM, XRD and EDX. The coatings contained only biocompatible phases – anatase, hy-droxyapatite and tricalcium phosphate. No cytotoxic components have been registered. The stoichiometric ratio was Ca/P  1.56–1.86. The conclusion is made about the prospects of the proposed integrated technology for manufacturing bilayer ceramics to titanium implants.


Sign in / Sign up

Export Citation Format

Share Document