scholarly journals Calcium Phosphate Coating Prepared by Microarc Oxidation Affects hTERT Expression, Molecular Presentation, and Cytokine Secretion in Tumor-Derived Jurkat T Cells

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4307
Author(s):  
Larisa S. Litvinova ◽  
Olga G. Khaziakhmatova ◽  
Valeria V. Shupletsova ◽  
Kristina A. Yurova ◽  
Vladimir V. Malashchenko ◽  
...  

Calcium phosphate (CaP) materials are among the best bone graft substitutes, but their use in the repair of damaged bone in tumor patients is still unclear. The human Jurkat T lymphoblast leukemia-derived cell line (Jurkat T cells) was exposed in vitro to a titanium (Ti) substrate (10 × 10 × 1 mm3) with a bilateral rough (average roughness index (Ra) = 2–5 μm) CaP coating applied via the microarc oxidation (MAO) technique, and the morphofunctional response of the cells was studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscope (EDX) analyses showed voltage-dependent (150–300 V) growth of structural (Ra index, mass, and thickness) and morphological surface and volume elements, a low Ca/PaT ratio (0.3–0.6), and the appearance of crystalline phases of CaHPO4 (monetite) and β-Ca2P2O7 (calcium pyrophosphate). Cell and molecular reactions in 2-day and 14-day cultures differed strongly and correlated with the Ra values. There was significant upregulation of hTERT expression (1.7-fold), IL-17 secretion, the presentation of the activation antigens CD25 (by 2.7%) and CD95 (by 5.15%) on CD4+ cells, and 1.5–2-fold increased cell apoptosis and necrosis after two days of culture. Hyperactivation-dependent death of CD4+ cells triggered by the surface roughness of the CaP coating was proposed. Conversely, a 3.2-fold downregulation in hTERT expression increased the percentages of CD4+ cells and their CD95+ subset (by 15.5% and 22.9%, respectively) and inhibited the secretion of 17 of 27 test cytokines/chemokines without a reduction in Jurkat T cell survival after 14 days of coculture. Thereafter, cell hypoergy and the selection of an hTERT-independent viable CD4+ subset of tumor cells were proposed. The possible role of negative zeta potentials and Ca2+ as effectors of CaP roughness was discussed. The continuous (2–14 days) 1.5–6-fold reductions in the secretion of vascular endothelial growth factor (VEGF) by tumor cells correlated with the Ra values of microarc CaP-coated Ti substrates seems to limit surgical stress-induced metastasis of lymphoid malignancies.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3693
Author(s):  
Yurii P. Sharkeev ◽  
Ekaterina G. Komarova ◽  
Valentina V. Chebodaeva ◽  
Mariya B. Sedelnikova ◽  
Aleksandr M. Zakharenko ◽  
...  

A modern trend in traumatology, orthopedics, and implantology is the development of materials and coatings with an amorphous–crystalline structure that exhibits excellent biocopatibility. The structure and physico–chemical and biological properties of calcium phosphate (CaP) coatings deposited on Ti plates using the micro-arc oxidation (MAO) method under different voltages (200, 250, and 300 V) were studied. Amorphous, nanocrystalline, and microcrystalline statesof CaHPO4 and β-Ca2P2O7were observed in the coatings using TEM and XRD. The increase in MAO voltage resulted in augmentation of the surface roughness Ra from 2.5 to 6.5 µm, mass from 10 to 25 mg, thickness from 50 to 105 µm, and Ca/P ratio from 0.3 to 0.6. The electrical potential (EP) of the CaP coatings changed from −456 to −535 mV, while the zeta potential (ZP) decreased from −53 to −40 mV following an increase in the values of the MAO voltage. Numerous correlations of physical and chemical indices of CaP coatings were estimated. A decrease in the ZP magnitudes of CaP coatings deposited at 200–250 V was strongly associated with elevated hTERT expression in tumor-derived Jurkat T cells preliminarily activated with anti-CD2/CD3/CD28 antibodies and then contacted in vitro with CaP-coated samples for 14 days. In turn, in vitro survival of CD4+ subsets was enhanced, with proinflammatory cytokine secretion of activated Jurkat T cells. Thus, the applied MAO voltage allowed the regulation of the physicochemical properties of amorphous–crystalline CaP-coatings on Ti substrates to a certain extent. This method may be used as a technological mechanism to trigger the behavior of cells through contact with micro-arc CaP coatings. The possible role of negative ZP and Ca2+ as effectors of the biological effects of amorphous–crystalline CaP coatings is discussed. Micro-arc CaP coatings should be carefully tested to determine their suitability for use in patients with chronic lymphoid malignancies.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 144-144
Author(s):  
William M Townsend ◽  
Robert Marcus ◽  
Jon Salisbury ◽  
Deborah Yallop ◽  
Piers EM Patten ◽  
...  

Abstract The tumor microenvironment plays a central role in the pathogenesis of follicular lymphoma (FL) and has been shown to influence prognosis. The biological basis for this and the contribution of individual cell types however, remain unclear. In this study we compared the cellular content and structure of neoplastic follicles in FL with their normal counterparts in reactive lymph nodes (LNs). We specifically focused on follicular helper T cells (TFH) which, in normal germinal centers (GCs), form immune synapses with antigen responsive B cells triggering B cell proliferation and expression of activation induced cytidine deaminase (AID), the enzyme required for somatic hypermutation and class switch recombination. This is of relevance because off-target AID activity is thought to play a role in generating the mutations that characterize progressive FL. A limitation of previous studies of the FL microenvironment is the use of either single parameter immunohistochemistry which fails to accurately define the complex populations of cells involved, or flow cytometry on disaggregated cells which results in the loss of architectural information. In this study we used multiparameter confocal immunofluorescent (IF) microscopy to investigate in vivo the phenotype, distribution and interaction of CD4+ T cells in FL and to determine to what extent these are similar to normal GCs. Confocal IF microscopy was performed on multiple sections of formalin fixed paraffin embedded LN biopsy specimens from 20 patients with untreated FL, comparison was made with reactive LNs (n=5) and chronic lymphocytic leukemia (CLL) LN biopsies (n=5). Each section was stained with a combination of up to 4 simultaneously applied primary antibodies against CD3, CD4, CD20, PD1, ICOS, BCL6, AID, and Ki67, and fluorescently labelled secondary antibodies. Microscopy was performed using a Nikon TiE fluorescent microscope equipped with A1R Si Confocal imaging system; images were analyzed using NIS software. Results show that CD4+ T cells in FL are mainly located in the inter-follicular regions but they were also identified within the follicles in all cases. Combination staining with anti-CD4, PD1, and ICOS revealed that 23% (95%CI 18-27) of CD4+ T cells within follicles co-express PD1 and ICOS consistent with a TFH phenotype which is significantly higher than in inter-follicular areas where only 5% (95% CI 3-7) of CD4+ cells had this phenotype (p<0.001). PD1+ ICOS+ T cells were positive for the transcription factor BCL6, further confirming the TFH phenotype. There was no significant difference in the proportion of CD4+ cells that were TFH in FL follicles and reactive LN GCs. In CLL cases, 54% of CD4+ cells expressed PD1 but only 9% co-expressed PD1 and ICOS, significantly lower than either FL follicles or GCs (p<0.001). Automated analysis of 3D z-stacks demonstrated a very close spatial relationship between proliferating tumor cells and TFH in FL with a mean of 42% (95%CI 35-48) Ki67+ tumor cells in direct contact with TFH cells. No association was seen between the extent of co-localization and histological grade. A similar pattern of co-localization of TFH cells next to proliferating B cells was also identified in the light zones of reactive GCs. Of note, we also identified features of synapse formation between TFH cells and proliferating tumor cells; TFH cells demonstrated projections that encompass the tumor cell with distortion of the T cell nucleus and increased CD4 and PD1 expression at sites of cell contact (Figure 1). These findings were similarly present in reactive GCs. Finally, AID was expressed in proliferating GC B cells and in proliferating tumor cells in FL. AID expressing cells were found to be in close contact with PD1+ T cells in both GCs and FL. Our findings show many parallels between the follicles of FL and normal GCs. In particular the proportion of CD4+ T cells with a TFH phenotype and their localization in direct contact with proliferating AID+ B cells were very similar. Of note, features of immune synapses were observed in both GCs and FL. Taken together, the data suggest that TFH cells have an important role in the pathogenesis of FL just as they are vital in the normal GC reaction. Interruption of this interaction is a potential therapeutic target. Figure 1 High power view (x60 zoom) of follicular lymphoma showing proliferating cells in close contact with TFH cells. Ki67 (red), PD1 (white), ICOS (green), DAPI (blue) Figure 1. High power view (x60 zoom) of follicular lymphoma showing proliferating cells in close contact with TFH cells. Ki67 (red), PD1 (white), ICOS (green), DAPI (blue) Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e14541-e14541
Author(s):  
Yuzi Wang ◽  
Lue Sun ◽  
Xiaokang Li ◽  
Koji Tsuboi

e14541 Background: In situ dying and just died tumor cells after irradiation give danger signals and release tumor-specific antigens which are supposed to be incorporated into dendritic cells (DCs), and sequentially rendering T-cells activated and proliferated. However, it has been clarified that activated T-cells are killed by PD-L1 ligands on tumor cells which bind to PD-1 receptors on T-cells, consequently suppressing systemic cellular immunological response. To improve local control and prevent metastases after localized radiotherapy, we examined whether the combination of anti-PD-1 antibody and bone marrow derived DCs (BM-DCs) can enhance both the local and systemic antitumor immunoreactions after localized X-ray irradiation in a murine melanoma model. Methods: BM-DCs were induced by using GM-CSF and IL-4 from bone marrow cells taken from the femur and tibia of C57BL/6 mice. Syngeneic B16 melanoma cells implanted subcutaneously at the left thighs of C57BL/6 mice were irradiated with X-ray (8 Gy) 5 days after inoculation. After 1, 3, 5, 7 days from irradiation, induced DCs were injected directly to the tumor site, similarly, after 1, 3, 5 days from irradiation, anti-PD-1 antibody were injected intraperitoneally. To examine the systemic immunoreaction, B16 cells were also inoculated to the right side 4 days after the left side inoculation, and treated with the same protocols only on the left side. The size of tumors was monitored and survival analyses were performed. Results: The induced DCs showed the ability to incorporate antigens and to prime and proliferate T-cells in vitro. The combination treatment of anti-PD-1 antibody, BM-DCs and X-ray irradiation showed a significant delay of tumor growth compared to single or double combination treatments in vivo. In addition, this triple combination treatment significantly inhibited the tumor growth on the other side compared to other treatments. Conclusions: DCs and anti-PD-1 antibody significantly enhanced the antitumor effect of X-ray irradiation and prolonged the survival time. This combination also can induce a strong systemic antitumor immunoreaction which could treat metastatic tumors.


2021 ◽  
Vol 11 (8) ◽  
pp. 1428-1437
Author(s):  
Ping Sun ◽  
Shuyi Li ◽  
Jianhua Niu ◽  
Min Yi ◽  
Weixing Xu ◽  
...  

A biphasic calcium-phosphate (CaP)-coating is a promising surface modification for functionalizing various endosseous biomaterials. However, its biomedical application is limited by its low coating yield and incorporation inefficiency. We developed a highly concentrated (4.5×) supersaturated calcium-phosphate solution (SCPS) and compared its physicochemical properties with those of 1× SCPS. One milliliter of 4.5× SCPS formed a thick (110 μm) continuous coating on a titanium disc (4×4×1 mm), compared to the thin (29 μm) 1× SCPScoating. On X-ray diffraction analysis, the 4.5× SCPS-coating had characteristic dicalcium-phosphate dehydrate and apatite peaks, in contrast to the apatite-only of 1× SCPS-coating. Under acidic condition (pH 4.5), the 4. × 5SCPS-coating released significantly less Ca2+ than the 1× SCPS-coating. FITC-bovine serum albumin incorporation in the 4.5× SCPS-coating (81.20±6.42%) was significantly higher than in the 1× SCPS-coating (21.86±1.90%). Thus, this modified coating procedure holds promise for biomedical applications.


2019 ◽  
Author(s):  
V. V. Malashchenko ◽  
E. O. Shunkin ◽  
V. V. Shupletsova ◽  
O. G. Khaziakhmatova ◽  
K. A. Yurova ◽  
...  

Author(s):  
Quan He Bao ◽  
Xiang Xiang Li ◽  
Chen Zhang ◽  
Chao Sun

A dicalcium phosphate dihydrate (CaHPO4·2H2O, DCPD) coating is prepared to reduce the biodegradation rate of Mg–Ca–Zn alloy. The substrate is immersed into a solution with Ca(NO3)2·4 H2O 0.1 mol/L and Na3PO4 0.1 mol/L to obtain calcium phosphate coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. The biodegradable behavior is investigated by immersion tests. The results show that calcium phosphate coating consists of many flake particles and with immersion time increasing, the coating thickness increased and became more uniform and smooth. The coating can reduce the biodegradation rate of Mg alloys in Hank’s.


Materials ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 360 ◽  
Author(s):  
Igor Khlusov ◽  
Larisa Litvinova ◽  
Valeria Shupletsova ◽  
Olga Khaziakhmatova ◽  
Elena Melashchenko ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 668-668
Author(s):  
Jianfei Qian ◽  
Liang Zhang ◽  
Sungyoul Hong ◽  
Ji Wang ◽  
Larry Kwak ◽  
...  

Abstract Dickkopf-1 (DKK1), a secreted protein and Wnt signaling pathway inhibitor, is highly expressed by the tumor cells of most multiple myeloma (MM) patients and contributes to osteolytic bone disease by inhibiting the differentiation of osteoblasts. DKK1 has been targeted as a myeloma-associated antigen by immunotherapeutical approaches based on DKK1-directed monoclonal antibodies and DKK1-specific cytolytic T lymphocytes (CTLs). The present study was conducted to develop a treatment strategy through adoptive transfer of DKK1-specific CTLs in a SCID-hu system. Using DKK1 peptide-pulsed dendritic cells (DCs), we successfully generated DKK1-specific CTL lines and clones from HLA-A2+ MM patients in vitro. These CTLs not only had cytolytic activity against DKK1 peptide-pulsed T2 cells, but also significantly lysed autologous myeloma tumor cells, HLA-A2+ and DKK1+ MM cell lines U266 and IM-9, and primary tumor cells in vitro. No killing was observed against HLA-A2+ normal lymphocytes, including B cells and HLA-A2+ DKK1- XG1 or HLA-A2- myeloma cell lines or primary myeloma cells from patients. To determine the in vivo antitumor activity, SCID-hu mice were engrafted with primary MM cells expressing high levels of DKK1 from patients and treated with DKK1-specific CTLs after one month of tumor injection. Control mice were treated with naïve CD8+ T cells or PBS alone. All mice were examined by X-ray, tumor burden was measured according to levels of circulating human IgG, and survival rates were determined. All mice established human myeloma within one month after tumor inoculation, at which time the level of circulating human IgG was greater than 600 ng/ml in mouse serum. After another 3 weeks, the level of circulating human IgG was greater than 2,500 ng/ml in the serum of all control mice, while only 40% mice treated with DKK1-specific CTLs had high levels of circulating human IgG. X-ray examination showed that osteolytic bone disease and a large tumor burden were found in all control mice, while the established tumor was eradicated in 60% mice treated with DKK1-specific CTLs. Results of immunofluorescence studies showed that only tumor-reactive DKK1-specific CD8+ T cells were able to infiltrate into the tumor and mediate apoptosis in tumor cells. All control mice succumbed to myeloma within one month of establishment of the myeloma, while 9 out of 15 mice treated with DKK1-specific CTLs were macroscopically disease-free at the end of the experiment. These results suggest that DKK1-specific CTLs are able to eradicate established patient-derived primary myeloma in the host and that adoptive transfer of DKK1-specific CTLs may be used for myeloma therapy.


Sign in / Sign up

Export Citation Format

Share Document