scholarly journals Influence of Base oil Polarity on the Tribological Performance of Surface-Active Engine Oil Additives

2021 ◽  
Vol 69 (3) ◽  
Author(s):  
Febin Cyriac ◽  
Tee Xin Yi ◽  
Sendhil Kumar Poornachary ◽  
Pui Shan Chow
2021 ◽  
Author(s):  
Febin Cyriac ◽  
Xin Yi Xin Tee ◽  
Sendhil K Poornachary ◽  
Pui Shan Chow

Abstract Friction, wear and tribofilm growth of organic friction modifiers (glycerol monooleate and oleamide), anti-wear additive (ZDDP) and binary additive system comprising the organic friction modifiers and ZDDP were studied in polyalphaolefin (PAO) and ester oil. The mechanisms underlying base oil polarity-dependent frictional performance of the OFM and AW additives at high temperature (140 oC), either singly or in combination, was investigated in the light of chemical composition analysis of the tribofilms post friction measurements using energy-dispersive X-ray spectroscopy (EDX), static and dynamic time-of-flight secondary ion mass spectrometry (ToF-SIMS). Depending on the rubbing conditions, the boundary friction coefficient of the binary additive systems were found to be either lower than that of individual additives or to lay between the values for the individual additives. Chemical composition analysis of the tribofilms indicated that the nature of base oil controlled interactions between ZDDP and OFM and consequently adsorption and reactive tribofilm formation in the boundary lubrication layer. Surface roughness and wear scar width measured post tribological tests using 3D surface profiler showed improved wear performance in both PAO and ester-based additive formulations.


Present study was carried out for knowing how nanotechnology can be employed for improving the performances in tribology. A significant number of investigations have been reported on the effect of nanoparticles as oil additives. The wear and friction tests were carried on four ball oil tester using ZDDP, NiO and MoS2 nanoparticles in 1wt% combination with mineral oil to provides the reduction in friction and wear. Much of the research suggests that even up to 1% concentrations of such particles are instrumental in reducing wear and friction. Nanoparticle additives have proved to be promising for development of Tribological properties of mineral oil. The tribological properties of typical engine oil like SAE15W40 mineral oil added with nanoparticle additives were studied and then experimental analysis was done. Investigations were performed on oil having concentrations of Zinc Dialkyl Dithio Phosphate, Molybdenum Disulfide and Nickel Oxide nanoparticles and their combinations to find that anti wear properties are improved. The evaluation of the tribological behavior pertaining to friction was determined using four ball oil testing machine TR-30L containing combination of above described nanoparticles together in base oil showed the most promising results


2013 ◽  
Vol 68 ◽  
pp. 313-319 ◽  
Author(s):  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Mohd Fadzli Bin Abdollah ◽  
Hilmi Amiruddin ◽  
Noreffendy Tamaldin ◽  
Nur Rashid Mat Nuri

2014 ◽  
Vol 8 (1) ◽  
pp. 200-205 ◽  
Author(s):  
Kazushi Tamura ◽  
Toshimasa Utaka ◽  
Hideki Kamano ◽  
Norikuni Hayakawa ◽  
Tomomi Miyasaka ◽  
...  

2016 ◽  
Vol 721 ◽  
pp. 451-455
Author(s):  
Armands Leitans ◽  
Eriks Palcevskis

In work investigated effects of zirconium oxide (ZrO2), spinel (MgAl2O4) and mullite (Al6Si2O13) nanosized powders on the base oil tribological properties. The nanosized (30-40nm) powders manufactured by plasma chemical synthesis method. Tribological experiments used on ball-on-disc type tribometer, measured coefficient of friction and determined metalic disc wear. Base oil used selectively purified mineral oil (conform SAE-20 viscosity) without any functional additives. Nanosized powders dispersed in base oil at 0.5; 1.0; 2.0; wt.%. At work cocluded, that the adition nanoparticles in base oil, possible reduced friction pair wear and friction coefficient. As the main results include spinel (MgAl2O4) nanoparticles 0.5 and 1.0 wt. % concentration ability reduced friction coeffiecient value.


2011 ◽  
Vol 328-330 ◽  
pp. 203-208 ◽  
Author(s):  
Cheng Bin Chen ◽  
Da Heng Mao ◽  
Chen Shi ◽  
Yang Liu

Nano-WS2(tungsten disulfide nanoparticles)lubricating oil additive, prepared by the nanometer WS2particulates and semi-synthetic engine base oil as raw materials, was added into Great Wall engine oil with different mass ratio. With a contrast study on these oil samples, the results show that it can improve the extreme pressure, antiwear and viscosity-temperature properties of the engine oil effectively by adding a certain amount of nano-WS2additive, and the optimal concentration is 2wt%. The oil film strength, sintering load and viscosity index of this lubricating oil is respectively 1.35 times, 1.58 times and 1.05 times as that of Great Wall engine oil. In addition, when tested under the grinding conditions of 392 N, 1450 r /min and 30 min, the diameter of worn spot reduces 0.018mm, and the average friction coefficients of friction pairs decrease 16.3%, both of which are lubricated by the oil containing nano-WS2additive. Meanwhile, the experiments testify that the tribological and viscosity-temperature properties of the nano-WS2additive are better than that of the Henkel MoS2additive.


Author(s):  
Moussa Diaby ◽  
Michel Sablier ◽  
Anthony Le Negrate ◽  
Mehdi El Fassi

On the basis of ongoing research conducted on the clarification of processes responsible for lubricant degradation in the environment of piston grooves in EGR diesel engines, an experimental investigation was aimed to develop a kinetic model which can be used for the prediction of lubricant oxidative degradation correlated to endurance test conducted on engines. Knowing that base oils are a complex blend of paraffins and naphtenes with a wide range of sizes and structures, their chemistry analysis during the oxidation process can be highly convoluted. In the present work, investigations were carried out with the squalane (C30H62) chosen for its physical and chemical similarities with the lubricant base oils used during the investigations. Thermo-oxidative degradation of this hydrocarbon was conducted at atmospheric pressure in a tubular furnace, while varying temperature and duration of the tests in order to establish an oxidation reaction rate law. The same experimental procedures was applied to squalane doped with two different phenolic antioxidants usually present in engine oil composition: 2,6-di-tert-butyl-4-methylphenol (BHT), and octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate (OBHP). Thus, the effect of both antioxidants on the oxidation rate law was investigated. Data analysis of the oxidized samples (FTIR spectroscopy, gas chromatography/mass spectrometry GC/MS) allowed to rationalize the thermo-oxidative degradation of squalane. The resulting kinetic modelling provides a practical analytical tool to follow the thermal degradation processes, which can be used for prediction of base oil hydrocarbon ageing. If experiments confirmed the role of phenolic additives as an affective agent to lower oxidation rates, the main results lay in the observation of a threshold temperature where a reversed activity of these additives was observed.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Harpreet Singh ◽  
ParamPreet Singh ◽  
Hiralal Bhowmick

The present study is focused on the performance evaluation of MoS2, H3BO3, and multiwall carbon nanotubes (MWCNT) used as the potential oil additives in base oil for aluminum metal matrix composites (AMMC)–steel (EN31) tribocontact. Al–B4C composite is used for this purpose; based on a set of preliminary investigation under unlubricated and fresh oil lubrication, three different types of AMMCs (Al–SiC, Al–B4C, and Al–SiC–B4C) were used. A pin-on-disk tribometer is used for all the friction and wear tests under operating condition of load 9.8 N and sliding velocity of 0.5 m/s. From the particle-based wet tribology, it is clear that both the additives H3BO3 and MWCNT improve the friction as well as wear behavior for selected composite contacts. Multiwall carbon nanotubes emerged out as superior among all the additives, whereas MoS2 additives show marginal enhancement in frictional performance under given operating conditions. Fractography and morphological study of pin specimens are carried out to identify the underlying friction and wear mechanisms.


2019 ◽  
Vol 68 (1) ◽  
Author(s):  
Arman Mohammad Khan ◽  
Hongxing Wu ◽  
Qiang Ma ◽  
Yip-Wah Chung ◽  
Q. Jane Wang

Sign in / Sign up

Export Citation Format

Share Document