Landscape genomics and selection signatures of local adaptation of Eritrean indigenous cattle along environmental gradients

2021 ◽  
Vol 53 (4) ◽  
Author(s):  
S. Goitom ◽  
Mathew G. Gicheha ◽  
Francis K. Njonge ◽  
Ngeno Kiplangat
2018 ◽  
Author(s):  
Elia Vajana ◽  
Mario Barbato ◽  
Licia Colli ◽  
Marco Milanesi ◽  
Estelle Rochat ◽  
...  

AbstractEast Coast fever (ECF) is a fatal sickness affecting cattle populations of eastern, central, and southern Africa. The disease is transmitted by the tickRhipicephalus appendiculatus, and caused by the protozoanTheileria parva parva, which invades host lymphocytes and promotes their clonal expansion. Importantly, indigenous cattle show tolerance to infection in ECF-endemically stable areas. Here, the putative genetic bases underlying ECF-tolerance were investigated using molecular data and epidemiological information from 823 indigenous cattle from Uganda. Vector distribution and host infection risk were estimated over the study area and subsequently tested as triggers of local adaptation by means of landscape genomics analysis. We identified 41 and seven candidate adaptive loci for tick resistance and infection tolerance, respectively. Among the genes associated with the candidate adaptive loci arePRKG1andSLA2.PRKG1was already described as associated with tick resistance in indigenous South African cattle, due to its role into inflammatory response.SLA2 is part of the regulatory pathways involved into lymphocytes’ proliferation. Additionally, local ancestry analysis suggested the zebuine origin of the genomic region candidate for tick resistance.Author summaryThe tick-borne parasiteTheileria parva parvainfects cattle populations of eastern, central and southern Africa, by causing a highly fatal pathology called “East Coast fever”. The disease is especially severe for the exotic breeds imported to Africa, as well as outside the endemic areas of East Africa. In these regions, indigenous cattle populations can survive to infection, and this tolerance might result from unique adaptations evolved to fight the disease. We investigated this hypothesis by using a method named “landscape genomics”, with which we compared the genetic characteristics of indigenous Ugandan cattle coming from areas at different infection risk, and located genomic sites potentially attributable to tolerance. In particular, the method pinpointed two genes, one (PRKG1) involved into inflammatory response and potentially affecting East Coast fever vector attachment, the other (SLA2) involved into lymphocytes proliferation, a process activated byT. parva parvainfection. Our findings can orientate future research on the genetic basis of East Coast fever-tolerance, and derive from a general method that can be applied to investigate adaptation in analogous host-vector-parasite systems. Characterization of the genetic factors underlying East Coast-fever-tolerance represents an essential step towards enhancing sustainability and productivity of local agroecosystems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sèyi Fridaïus Ulrich Vanvanhossou ◽  
Tong Yin ◽  
Carsten Scheper ◽  
Ruedi Fries ◽  
Luc Hippolyte Dossa ◽  
...  

The Dwarf Lagune and the Savannah Somba cattle in Benin are typical representatives of the endangered West African indigenous Shorthorn taurine. The Lagune was previously exported to African and European countries and bred as Dahomey cattle, whereas the Somba contributed to the formation of two indigenous hybrids known as Borgou and Pabli cattle. These breeds are affected by demographic, economic, and environmental pressures in local production systems. Considering current and historical genomic data, we applied a formal test of admixture, estimated admixture proportions, and computed genomic inbreeding coefficients to characterize the five breeds. Subsequently, we unraveled the most recent selection signatures using the cross-population extended haplotype homozygosity approach, based on the current and historical genotypes. Results from principal component analyses and high proportion of Lagune ancestry confirm the Lagune origin of the European Dahomey cattle. Moreover, the Dahomey cattle displayed neither indicine nor European taurine (EUT) background, but they shared on average 40% of autozygosity from common ancestors, dated approximately eight generations ago. The Lagune cattle presented inbreeding coefficients larger than 0.13; however, the Somba and the hybrids (Borgou and Pabli) were less inbred (≤0.08). We detected evidence of admixture in the Somba and Lagune cattle, but they exhibited a similar African taurine (AFT) ancestral proportion (≥96%) to historical populations, respectively. A moderate and stable AFT ancestral proportion (62%) was also inferred for less admixed hybrid cattle including the Pabli. In contrast, the current Borgou samples displayed a lower AFT ancestral proportion (47%) than historical samples (63%). Irrespective of the admixture proportions, the hybrid populations displayed more selection signatures related to economic traits (reproduction, growth, and milk) than the taurine. In contrast, the taurine, especially the Somba, presented several regions known to be associated with adaptive traits (immunity and feed efficiency). The identified subregion of bovine leukocyte antigen (BoLA) class IIb (including DSB and BOLA-DYA) in Somba cattle is interestingly uncommon in other African breeds, suggesting further investigations to understand its association with specific adaptation to endemic diseases in Benin. Overall, our study provides deeper insights into recent evolutionary processes in the Beninese indigenous cattle and their aptitude for conservation and genetic improvement.


2020 ◽  
Author(s):  
Katherine M. Eaton ◽  
Moisés A. Bernal ◽  
Nathan J.C. Backenstose ◽  
Trevor J. Krabbenhoft

AbstractLocal adaptation can drive diversification of closely related species across environmental gradients and promote convergence of distantly related taxa that experience similar conditions. We examined a potential case of adaptation to novel visual environments in a species flock (Great Lakes salmonids, genus Coregonus) using a new amplicon genotyping protocol on the Oxford Nanopore Flongle. Five visual opsin genes were amplified for individuals of C. artedi, C. hoyi, C. kiyi, and C. zenithicus. Comparisons revealed species-specific differences in the coding sequence of rhodopsin (Tyr261Phe substitution), suggesting local adaptation by C. kiyi to the blue-shifted depths of Lake Superior. Parallel evolution and “toggling” at this amino acid residue has occurred several times across the fish tree of life, resulting in identical changes to the visual systems of distantly related taxa across replicated environmental gradients. Our results suggest that ecological differences and local adaptation to distinct visual environments are strong drivers of both evolutionary parallelism and diversification.


2021 ◽  
Vol 8 ◽  
Author(s):  
Peter von Dassow ◽  
Paula Valentina Muñoz Farías ◽  
Sarah Pinon ◽  
Esther Velasco-Senovilla ◽  
Simon Anguita-Salinas

The cosmopolitan phytoplankter Emiliania huxleyi contrasts with its closest relatives that are restricted to narrower latitudinal bands, making it interesting for exploring how alternative outcomes in phytoplankton range distributions arise. Mitochondrial and chloroplast haplogroups within E. huxleyi are shared with their closest relatives: Some E. huxleyi share organelle haplogroups with Gephyrocapsa parvula and G. ericsonii which inhabit lower latitudes, while other E. huxleyi share organelle haplogroups with G. muellerae, which inhabit high latitudes. We investigated whether the phylogeny of E. huxleyi organelles reflects environmental gradients, focusing on the Southeast Pacific where the different haplogroups and species co-occur. There was a high congruence between mitochondrial and chloroplast haplogroups within E. huxleyi. Haplogroup II of E. huxleyi is negatively associated with cooler less saline waters, compared to haplogroup I, both when analyzed globally and across temporal variability at the small special scale of a center of coastal upwelling at 30° S. A new mitochondrial haplogroup Ib detected in coastal Chile was associated with warmer waters. In an experiment focused on inter-species comparisons, laboratory-determined thermal reaction norms were consistent with latitudinal/thermal distributions of species, with G. oceanica exhibiting warm thermal optima and tolerance and G. muellerae exhibiting cooler thermal optima and tolerances. Emiliania huxleyi haplogroups I and II tended to exhibit a wider thermal niche compared to the other Gephyrocapsa, but no differences among haplogroups within E. huxleyi were found. A second experiment, controlling for local adaptation and time in culture, found a significant difference between E. huxleyi haplogroups. The difference between I and II was of the expected sign, but not the difference between I and Ib. The differences were small (≤1°C) compared to differences reported previously within E. huxleyi by local adaptation and even in-culture evolution. Haplogroup Ib showed a narrower thermal niche. The cosmopolitanism of E. huxleyi might result from both wide-spread generalist phenotypes and specialist phenotypes, as well as a capacity for local adaptation. Thermal reaction norm differences can well explain the species distributions but poorly explain distributions among mitochondrial haplogroups within E. huxleyi. Perhaps organelle haplogroup distributions reflect historical rather than selective processes.


2020 ◽  
Vol 117 (30) ◽  
pp. 17482-17490 ◽  
Author(s):  
Mark C. Urban ◽  
Sharon Y. Strauss ◽  
Fanie Pelletier ◽  
Eric P. Palkovacs ◽  
Mathew A. Leibold ◽  
...  

Historically, many biologists assumed that evolution and ecology acted independently because evolution occurred over distances too great to influence most ecological patterns. Today, evidence indicates that evolution can operate over a range of spatial scales, including fine spatial scales. Thus, evolutionary divergence across space might frequently interact with the mechanisms that also determine spatial ecological patterns. Here, we synthesize insights from 500 eco-evolutionary studies and develop a predictive framework that seeks to understand whether and when evolution amplifies, dampens, or creates ecological patterns. We demonstrate that local adaptation can alter everything from spatial variation in population abundances to ecosystem properties. We uncover 14 mechanisms that can mediate the outcome of evolution on spatial ecological patterns. Sometimes, evolution amplifies environmental variation, especially when selection enhances resource uptake or patch selection. The local evolution of foundation or keystone species can create ecological patterns where none existed originally. However, most often, we find that evolution dampens existing environmental gradients, because local adaptation evens out fitness across environments and thus counteracts the variation in associated ecological patterns. Consequently, evolution generally smooths out the underlying heterogeneity in nature, making the world appear less ragged than it would be in the absence of evolution. We end by highlighting the future research needed to inform a fully integrated and predictive biology that accounts for eco-evolutionary interactions in both space and time.


2019 ◽  
Vol 116 (26) ◽  
pp. 12933-12941 ◽  
Author(s):  
David B. Lowry ◽  
John T. Lovell ◽  
Li Zhang ◽  
Jason Bonnette ◽  
Philip A. Fay ◽  
...  

Local adaptation is the process by which natural selection drives adaptive phenotypic divergence across environmental gradients. Theory suggests that local adaptation results from genetic trade-offs at individual genetic loci, where adaptation to one set of environmental conditions results in a cost to fitness in alternative environments. However, the degree to which there are costs associated with local adaptation is poorly understood because most of these experiments rely on two-site reciprocal transplant experiments. Here, we quantify the benefits and costs of locally adaptive loci across 17° of latitude in a four-grandparent outbred mapping population in outcrossing switchgrass (Panicum virgatumL.), an emerging biofuel crop and dominant tallgrass species. We conducted quantitative trait locus (QTL) mapping across 10 sites, ranging from Texas to South Dakota. This analysis revealed that beneficial biomass (fitness) QTL generally incur minimal costs when transplanted to other field sites distributed over a large climatic gradient over the 2 y of our study. Therefore, locally advantageous alleles could potentially be combined across multiple loci through breeding to create high-yielding regionally adapted cultivars.


2014 ◽  
Vol 369 (1648) ◽  
pp. 20130342 ◽  
Author(s):  
Alexander S. T. Papadopulos ◽  
Maria Kaye ◽  
Céline Devaux ◽  
Helen Hipperson ◽  
Jackie Lighten ◽  
...  

It is now recognized that speciation can proceed even when divergent natural selection is opposed by gene flow. Understanding the extent to which environmental gradients and geographical distance can limit gene flow within species can shed light on the relative roles of selection and dispersal limitation during the early stages of population divergence and speciation. On the remote Lord Howe Island (Australia), ecological speciation with gene flow is thought to have taken place in several plant genera. The aim of this study was to establish the contributions of isolation by environment (IBE) and isolation by community (IBC) to the genetic structure of 19 plant species, from a number of distantly related families, which have been subjected to similar environmental pressures over comparable time scales. We applied an individual-based, multivariate, model averaging approach to quantify IBE and IBC, while controlling for isolation by distance (IBD). Our analyses demonstrated that all species experienced some degree of ecologically driven isolation, whereas only 12 of 19 species were subjected to IBD. The prevalence of IBE within these plant species indicates that divergent selection in plants frequently produces local adaptation and supports hypotheses that ecological divergence can drive speciation in sympatry.


2019 ◽  
Author(s):  
Alexandra K. Fraik ◽  
Mark J. Margres ◽  
Brendan Epstein ◽  
Soraia Barbosa ◽  
Menna Jones ◽  
...  

AbstractLandscape genomics studies focus on identifying candidate genes under selection via spatial variation in abiotic environmental variables, but rarely by biotic factors such as disease. The Tasmanian devil (Sarcophilus harrisii) is found only on the environmentally heterogeneous island of Tasmania and is threatened with extinction by a nearly 100% fatal, transmissible cancer, devil facial tumor disease (DFTD). Devils persist in regions of long-term infection despite epidemiological model predictions of species’ extinction, suggesting possible adaptation to DFTD. Here, we test the extent to which spatial variation and genetic diversity are associated with the abiotic environment and/or by DFTD. We employ genetic-environment association (GEAs) analyses using a RAD-capture panel consisting of 6,886 SNPs from 3,286 individuals sampled pre- and post-disease arrival. Pre-disease, we find significant correlations of allele frequencies with environmental variables, including 349 unique loci linked to 64 genes, suggesting local adaptation to abiotic environment. Following DFTD arrival, however, we detected few of the pre-disease candidate loci, but instead frequencies of candidate loci linked to 14 genes correlated with disease prevalence. Loss of apparent signal of abiotic local adaptation following disease arrival suggests swamping by the strong selection imposed by DFTD. Further support for this result comes from the fact that post-disease candidate loci are in linkage disequilibrium with genes putatively involved in immune response, tumor suppression and apoptosis. This suggests the strength GEA associations of loci with the abiotic environment are swamped resulting from the rapid onset of a biotic selective pressure.


2021 ◽  
Author(s):  
Christopher D Muir ◽  
Courtney L Van Den Elzen ◽  
Amy Lauren Angert

Premise Many traits covary with environmental gradients to form phenotypic clines. While local adaptation to the environment can generate phenotypic clines, other nonadaptive processes may also. If local adaptation causes phenotypic clines, then the direction of genotypic selection on traits should shift from one end of the cline to the other. Traditionally genotypic selection on non-Gaussian traits like germination rate have been hampered because it is challenging to measure their genetic variance. Methods Here we used quantitative genetics and reciprocal transplants to test whether a previously discovered cline in germination rate showed additional signatures of adaptation in the scarlet monkeyflower (Mimulus cardinalis). We measured genotypic and population level covariation between germination rate and early survival, a component of fitness. We developed a novel discrete log-normal model to estimate genetic variance in germination rate. Results Contrary to our adaptive hypothesis, we found no evidence that genetic variation in germination rate contributed to variation in early survival. Across populations, southern populations in both gardens germinated earlier and survived more. Conclusions Southern populations have higher early survival but this is not caused by faster germination. This pattern is consistent with nonadaptive forces driving the phenotypic cline in germination rate, but future work will need to assess whether there is selection at other life stages. The statistical framework should help expand quantitative genetic analyses for other waiting-time traits.


Sign in / Sign up

Export Citation Format

Share Document