Integrated Water Management Approach for Adaptation to Climate Change in Highly Water Stressed Basins

2020 ◽  
Vol 34 (3) ◽  
pp. 1173-1197
Author(s):  
Elpida Kolokytha ◽  
Dimitrios Malamataris
2017 ◽  
Vol 10 (1) ◽  
pp. 59-74 ◽  
Author(s):  
G. Cruz ◽  
W. Baethgen ◽  
D. Bartaburu ◽  
M. Bidegain ◽  
A. Giménez ◽  
...  

Abstract Most countries lack effective policies to manage climate risks, despite growing concerns with climate change. The authors analyzed the policy evolution from a disaster management to a risk management approach, using as a case study four agricultural droughts that impacted Uruguay’s livestock sector in the last three decades. A transdisciplinary team of researchers, extension workers, and policy makers agreed on a common conceptual framework for the interpretation of past droughts and policies. The evidence presented shows that the set of actions implemented at different levels when facing droughts were mainly reactive in the past but later evolved to a more integral risk management approach. A greater interinstitutional integration and a decreasing gap between science and policy were identified during the period of study. Social and political learning enabled a vision of proactive management and promoted effective adaptive measures. While the government of Uruguay explicitly incorporated the issue of adaptation to climate change into its agenda, research institutions also fostered the creation of interdisciplinary study groups on this topic, resulting in new stages of learning. The recent changes in public policies, institutional governance, and academic research have contributed to enhance the adaptive capacity of the agricultural sector to climate variability, and in particular to drought. This study confirms the relevance of and need to work within a transdisciplinary framework to effectively address the different social learning dimensions, particularly those concerning the adaptation to global change.


2015 ◽  
Vol 01 (03) ◽  
pp. 1550009 ◽  
Author(s):  
Mac Kirby ◽  
Jeff Connor ◽  
Mobin-ud Din Ahmad ◽  
Lei Gao ◽  
Mohammed Mainuddin

In an earlier paper (Kirby et al. 2014a), we showed that climate change and a new policy which reallocates water to the environment will impact both the flow of water and the income derived from irrigation in the Murray–Darling Basin. Here, we extend the analysis to consider irrigator and environmental water management strategies to adapt to these new circumstances. Using an integrated hydrology-economics model, we examine a range of strategies and their impact on flows and the gross income of irrigation. We show that the adaptation strategies provide a range of flow and economic outcomes in the Basin. Several strategies offer significant scope to enhance flows without large adverse impacts on the gross income of irrigation overall. Some environmental water management strategies enhance flows in the Murray part of the basin even under the drying influence of a projected median climate change. Irrigator strategies that include carryover of water in storage from one year to the next provide for lesser year to year variability in gross income and may be regarded as more advantageous in providing security against droughts. Flows and the gross income of low value irrigation industries strategies are sensitive to climate change, irrespective of adaptation strategy. Should a projected dry extreme climate change be realized, no strategy can prevent a large reduction in flows and also in gross income, particularly of low value irrigation industries. Nevertheless, environmental water management strategies mitigate the impact on flows, and in some cases may also help mitigate the impacts on gross income. High value irrigation industries are less affected (in terms of gross income, though net income will reduce because of rising water prices) by projected climate change, consistent with observation in the recent long term drought.


2020 ◽  
Vol 6 (5) ◽  
pp. 196-202
Author(s):  
Lyudmila Levkovska ◽  
Inna Irtyshcheva ◽  
Іryna Dubynska

Aim. The ratification of the Paris Agreement by Ukraine envisages an increase in the ability to adapt to the negative effects of climate change, as well as promoting low carbon development so as not to endanger food production. At the same time, water resources, on the one hand, are one of the most vulnerable to climate change components of the environment from the state of which the food security of the country depends directly, and on the other hand, the activity of the water management complex causes the emergence of both direct and indirect carbon footprint. Therefore, an indispensable prerequisite for sustainable low carbon development is the assessment of the carbon footprint of the main sectors of Ukraine's water management complex and the identification of priority measures for their decarbonisation and adaptation to expected climate change. Methods. The methodological basis for the assessment of the carbon footprint of the main sectors of the water management complex was the life cycle method (LCA), by which, based on the open data of the National Inventory of Anthropogenic Emissions from Sources and Absorption by Greenhouse Gas Absorbers in Ukraine and the statistical analysis of the results of previous studies. By means of systematic analysis of the main factors of greenhouse gas emission in the water management complex of Ukraine, the priority directions of its decarbonisation and adaptation to climate change were determined. Results. The estimated carbon footprint of Ukraine's water complex in 2017 was estimated to be 5.15 million tons of CO2-equiv, which was 1.6% of the total greenhouse gas emissions in Ukraine in 2017, and taking into account the potential carbon footprint enduse processes can be increased by up to 3%. Due to the deterioration of the water supply networks, an average of 35% of the supplied water is lost in Ukraine. Reducing network leakage by at least 10% will reduce carbon footprint by 30,000 tons of CO2-equiv annually. The priority areas for decarbonisation of the water management complex should be modernization of water supply and water treatment infrastructure, improvement of energy efficiency of pumping equipment and introduction of drip irrigation, and its adaptation to climate change – development of the network of green infrastructure. Conclusions. The low-carbon development of the water management system should include the introduction and coordination of such measures, which, on the one hand, minimize the adverse effects of climate change on water resources and contribute to reducing the carbon footprint of water management activities, and on the other hand, guarantee the achievement of sustainable development goals, in particular for ensuring water and society proper sanitary conditions.


2020 ◽  
Vol 1 (22) ◽  
Author(s):  
Sanel Buljubašić

Freshwater water resources are not inexhaustible [1]. In recent decades, more and more facts point to this statement from the European Charter for Water. Uncontrolled drinking water interventions, losses in water supply and climate change indicate the problem of sufficient quantities of drinking water [2]. Looking at this problem, it is hard to believe that new quantities of drinking water can be produced. The model of integrated water management has been increasingly used in recent years. The application of new technologies in water supply creates conditions for the controlled management of water intakes and losses in water supply. Each water sapply system needs to develop its own model for integrated water management.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 701 ◽  
Author(s):  
Jale Tosun ◽  
Lucas Leopold

A growing number of cities in different world regions are forming transnational networks in order to mitigate and adapt to climate change. In this study, we are interested in the nexus between climate change and urban water management. How do transnational city networks for climate action perceive urban water management? What kind of activities do they adopt for improving urban water management? How effective are these in practice? This study maps 17 transnational city networks that primarily work on climate governance, assesses whether they formally embrace urban water management as a field of activity, and analyzes the extent to which they influence local climate action regarding water-related issues. Our descriptive analysis reveals that the great majority of transnational city networks has embraced goals related to urban water management, mostly framed from the perspective of adaptation to climate change. However, our in-depth analysis of two frontrunner cities in Germany shows that membership in ICLEI (Local Governments for Sustainability) has only limited influence on the initiation and implementation of water-related policy measures.


Sign in / Sign up

Export Citation Format

Share Document