Selection of Agricultural Straws as Sustained-Release Carbon Source for Denitrification in a Drawer-Type Biological Filter

2019 ◽  
Vol 230 (1) ◽  
Author(s):  
Xiangxiong Guan ◽  
Guixia Ji ◽  
Suyun Xu ◽  
Yunbo Yun ◽  
Hongbo Liu
2021 ◽  
Vol 26 (4) ◽  
pp. 2800-2807
Author(s):  
IDA ZAHOVIĆ ◽  
JELENA DODIĆ ◽  
SINIŠA MARKOV ◽  
JOVANA GRAHOVAC ◽  
MILA GRAHOVAC ◽  
...  

In this study the screening of different Xanthomonas strains, isolated from infected crucifers and pepper leaves, for xanthan biosynthesis on semi-synthetic media containing different carbon sources was performed. The success of xanthan biosynthesis was estimated based on xanthan concentration in media and its molecular weight. Glucose and glycerol were investigated as carbon sources in a quantity of 20.0 g/L. Xanthan biosynthesis by different Xanthomonas isolates on two different cultivation media was carried out in Erlenmeyer flasks under aerobic conditions for 168 h. According to the obtained results selection of the carbon source, producing strain and their combination have a statistically significant effect on xanthan quantity and quality. The results obtained in this study indicate that local wild-type Xanthomonas strains isolated from pepper leaves have a great potential for application in biotechnological production of good-quality xanthan on glycerol-based media.


Author(s):  
KUSUMA PRIYA M. D. ◽  
VINOD KUMAR ◽  
DAMINI V. K. ◽  
ESWAR K. ◽  
KADIRI RAJESH REDDY ◽  
...  

Many drugs are available in the market for several diseases, disorder or even for a condition, but it is difficult to select a suitable carrier to attain maximum bioavailability and potential for a potent drug. Attaining a controlled and sustained release of a drug is purely focused on the selection of a carrier (natural, synthetic and hybrid) like nanosomes. Nanosomes have become a prominent tool in the field of pharmacy. Nanosomes are small uniform structures which deliver the drug to the specific targeted site, which mainly depends upon the presence of ligands, shape, size and surface chemistry. Nanosomes are available in various types which include Niosomes, Liposomes, Electrosomes, Aquasomes, Transfersomes, Phytosomes, Enzymosomes, Ethosomes, Invasome and Sphingosomes. In general, all these nanosomes are quite similar in nature with minute differences in their vesicular characteristics and composition. This review traces various ‘somes’ composition and their role in the formulation, applications, advantages, disadvantages, common formulation procedures and evaluation parameters.


2020 ◽  
Vol 367 (10) ◽  
Author(s):  
Rodolfo García-Contreras ◽  
Daniel Loarca ◽  
Caleb Pérez-González ◽  
J Guillermo Jiménez-Cortés ◽  
Abigail Gonzalez-Valdez ◽  
...  

ABSTRACT Pseudomonas aeruginosa is one of the main models to study social behaviors in bacteria since it synthesizes several exoproducts, including exoproteases and siderophores and release them to the environment. Exoproteases and siderophores are public goods that can be utilized by the individuals that produce them but also by non-producers, that are considered social cheaters. Molecularly exoprotease cheaters are mutants in regulatory genes such as lasR, and are commonly isolated from chronic infections and selected in the laboratory upon serial cultivation in media with protein as a sole carbon source. Despite that the production of exoproteases is exploitable, cooperators have also ways to restrict the growth and selection of social cheaters, for instance by producing toxic metabolites like pyocyanin. In this work, using bacterial competitions, serial cultivation and growth assays, we demonstrated that rhamnolipids which production is regulated by quorum sensing, selectively affect the growth of lasR mutants and are able to restrict social cheating, hence contributing to the maintenance of cooperation in Pseudomonas aeruginosa populations.


1996 ◽  
Vol 42 (1) ◽  
pp. 87-91 ◽  
Author(s):  
ESTEBAN C. DELL'ANGELICA ◽  
DANIEL MILIKOWSKI ◽  
DANIEL A. SAENZ ◽  
CARLOS A. STELLA ◽  
EUGENIA H. RAMOS ◽  
...  

2000 ◽  
Vol 66 (8) ◽  
pp. 3255-3261 ◽  
Author(s):  
Michael Klemba ◽  
Barbara Jakobs ◽  
Rolf-Michael Wittich ◽  
Dietmar Pieper

ABSTRACT The tcbR-tcbCDEF gene cluster, coding for the chlorocatechol ortho-cleavage pathway inPseudomonas sp. strain P51, has been cloned into a Tn5-based minitransposon. The minitransposon carrying thetcb gene cluster and a kanamycin resistance gene was transferred to Pseudomonas putida KT2442, and chromosomal integration was monitored by selection either for growth on 3-chlorobenzoate or for kanamycin resistance. Transconjugants able to utilize 3-chlorobenzoate as a sole carbon source were obtained, although at a >100-fold lower frequency than kanamycin-resistant transconjugants. The vast majority of kanamycin-resistant transconjugants were not capable of growth on 3-chlorobenzoate. Southern blot analysis revealed that many transconjugants selected directly on 3-chlorobenzoate contained multiple chromosomal copies of the tcb gene cluster, whereas those selected for kanamycin resistance possessed a single copy. Subsequent selection of kanamycin resistance-selected single-copy transconjugants for growth on 3-chlorobenzoate yielded colonies capable of utilizing this carbon source, but no amplification of the tcb gene cluster was apparent. Introduction of two copies of the tcb gene cluster without prior 3-chlorobenzoate selection resulted in transconjugants able to grow on this carbon source. Expression of thetcb chlorocatechol catabolic operon in P. putida thus represents a useful model system for analysis of the relationship among gene dosage, enzyme expression level, and growth on chloroaromatic substrates.


Sign in / Sign up

Export Citation Format

Share Document