scholarly journals A mathematical model of the link between growth and L-malic acid consumption for five strains of Oenococcus oeni

2014 ◽  
Vol 30 (12) ◽  
pp. 3163-3172 ◽  
Author(s):  
N. Fahimi ◽  
C. Brandam ◽  
P. Taillandier
2021 ◽  
Vol 7 (4) ◽  
pp. 304
Author(s):  
Charlotte Vion ◽  
Emilien Peltier ◽  
Margaux Bernard ◽  
Maitena Muro ◽  
Philippe Marullo

Natural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phenotypic diversity. Breeding programs that take advantage of this characteristic are widely used for selecting starters for wine industry, especially in the recent years when winemakers need to adapt their production to climate change. The aim of this work was to evaluate a marker assisted selection (MAS) program to improve malic acid consumption capacity of Saccharomyces cerevisiae in grape juice. Optimal individuals of two unrelated F1-hybrids were crossed to get a new genetic background carrying many “malic consumer” loci. Then, eleven quantitative trait loci (QTLs) already identified were used for implementing the MAS breeding program. By this method, extreme individuals able to consume more than 70% of malic acid in grape juice were selected. These individuals were tested in different enological matrixes and compared to their original parental strains. They greatly reduced the malic acid content at the end of alcoholic fermentation, they appeared to be robust to the environment, and they accelerated the ongoing of malolactic fermentations by Oenococcus oeni. This study illustrates how MAS can be efficiently used for selecting industrial Saccharomyces cerevisiae strains with outlier properties for winemaking.


Author(s):  
Charlotte Vion ◽  
Emilien Peltier ◽  
Margaux Bernard ◽  
Maitena Muro ◽  
Philippe Marullo

Background Natural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phe-notypic diversity. Breeding programs taking advantage of this characteristic, are widely used for yeast selection in the wine industry, especially in the recent years when winemakers need to adapt their production to climate change. The aim of this work was to evaluate a Marker Assisted Se-lection (MAS) program to improve malic acid consumption capacity of Saccharomyces cerevisiae in grape juice. Methods Optimal individuals of two unrelated F1-hybrids were crossed to get a new genetic background carrying many “malic consumer” loci. Then, eleven QTLs already identified were used for implementing the MAS breeding program. Results By this way, extreme individuals able to consume more than 70% of malic acid in grape juice were selected. These individuals were tested in different enological matrixes and compared to their original parental strains. They greatly reduced the malic acid content at the end of alcoholic fermentations, they appeared to be robust to the environment and accelerate the ongoing of malo-lactic fermentations by Oenococcus oeni. Conclusions This study illustrates how MAS can be efficiently used for selecting industrial Saccharomyces cerevisiae strains with outlier properties for winemaking.


2001 ◽  
Vol 90 (3) ◽  
pp. 380-387 ◽  
Author(s):  
Y. Vasserot ◽  
C. Dion ◽  
E. Bonnet ◽  
A. Maujean ◽  
P. Jeandet

2019 ◽  
Vol 15 ◽  
pp. 02034
Author(s):  
A. Morata ◽  
M.A. Bañuelos ◽  
C. López ◽  
S. Chenli ◽  
R. Vejarano ◽  
...  

One of the problems related to the increase in average temperatures in the wine-growing regions is the lower accumulation of organic acids in the berries. Wine freshness depends to a great extent on its acidity. Herein, the effectiveness of fumaric acid to inhibit malolactic fermentation or to stop it once initiated is evaluated in order to preserve the malic acid content. Different doses of fumaric acid and SO2 were tested. The ability of these compounds to inhibit bacterial development and stop the malic acid degradation was tested on a red wine of the variety Vitis vinifera L. cv. Tempranillo whose malic acid content was set at 1.5 g/L. The control wine inoculated with 6 log CFU/mL of Oenococcus oeni finished the malolactic fermentation in 12 days. However, the use of doses equal to or greater than 300 mg/L of fumaric acid delayed the onset of malolactic fermentation for more than 50 days with little degradation of malic acid. In addition, fumaric acid proved to be effective in stopping malolactic fermentation already started where the bacterial count was 7 log CFU/mL. Fumaric acid can be considered as a potent inhibitor of malolactic fermentation.


2019 ◽  
Vol 20 (16) ◽  
pp. 3980 ◽  
Author(s):  
Carmen Berbegal ◽  
Luigimaria Borruso ◽  
Mariagiovanna Fragasso ◽  
Maria Tufariello ◽  
Pasquale Russo ◽  
...  

This study reports the first application of a next generation sequencing (NGS) analysis. The analysis was designed to monitor the effect of the management of microbial resources associated with alcoholic fermentation on spontaneous malolactic consortium. Together with the analysis of 16S rRNA genes from the metagenome, we monitored the principal parameters linked to MLF (e.g., malic and lactic acid concentration, pH). We encompass seven dissimilar concrete practices to manage microorganisms associated with alcoholic fermentation: Un-inoculated must (UM), pied-de-cuve (PdC), Saccharomyces cerevisiae (SC), S. cerevisiae and Torulaspora delbrueckii co-inoculated and sequentially inoculated, as well as S. cerevisiae and Metschnikowia pulcherrima co-inoculated and sequentially inoculated. Surprisingly, each experimental modes led to different taxonomic composition of the bacterial communities of the malolactic consortia, in terms of prokaryotic phyla and genera. Our findings indicated that, uncontrolled AF (UM, PdC) led to heterogeneous consortia associated with MLF (with a relevant presence of the genera Acetobacter and Gluconobacter), when compared with controlled AF (SC) (showing a clear dominance of the genus Oenococcus). Effectively, the SC trial malic acid was completely degraded in about two weeks after the end of AF, while, on the contrary, malic acid decarboxylation remained uncomplete after 7 weeks in the case of UM and PdC. In addition, for the first time, we demonstrated that both (i) the inoculation of different non-Saccharomyces (T. delbrueckii and M. pulcherrima) and, (ii) the inoculation time of the non-Saccharomyces with respect to S. cerevisiae resources (co-inoculated and sequentially inoculated) influence the composition of the connected MLF consortia, modulating MLF performance. Finally, we demonstrated the first findings of delayed and inhibited MLF when M. pulcherrima, and T. delbrueckii were inoculated, respectively. In addition, as a further control test, we also assessed the effect of the inoculation with Oenococcus oeni and Lactobacillus plantarum at the end of alcoholic fermentation, as MLF starter cultures. Our study suggests the potential interest in the application of NGS analysis, to monitor the effect of alcoholic fermentation on the spontaneous malolactic consortium, in relation to wine.


2015 ◽  
Vol 195 ◽  
pp. 74-81 ◽  
Author(s):  
Karen Carrasco-Espinosa ◽  
Ramsés I. García-Cabrera ◽  
Andrea Bedoya-López ◽  
Mauricio A. Trujillo-Roldán ◽  
Norma A. Valdez-Cruz

2021 ◽  
Vol 42 (2) ◽  
Author(s):  
E. Gardoni ◽  
S. Benito ◽  
S. Scansani ◽  
S. Brezina ◽  
S. Fritsch ◽  
...  

Traditionally, the use of malolactic fermentation gives rise to microbiologically stable wines. However, malolactic fermentation is not free from possible collateral effects that can take place under specific scenarios. The present work tests the influence of different biological deacidification strategies on the volatile and non-volatile components of white must from Germany. The study compared mixed cultures of Lachancea thermotolerans and Schizosaccharomyces pombe and a pure culture of Sc. pombe to the classical biological deacidification process performed by lactic acid bacteria. Strains of Oenococcus oeni and Lactiplantibacillus plantarum were co- or sequentially inoculated with S. cerevisiae to carry out malolactic fermentation. Different fermentation treatments took place at a laboratory scale of 0.6 L in vessels of 0.75 L. The instrumental techniques Fourier-transform mid-infrared spectroscopy (FT-MIR), high performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry (GC-MS) were used to evaluate different chemical parameters in the final wines. The results showed the ability of Sc. pombe to consume malic acid in combination with L. thermotolerans without using S. cerevisiae or lactic acid bacteria. Fermentations involving Sc. pombe consumed all the malic acid, although they reduced the concentrations of higher alcohols, fatty acids and acetic acid. Simultaneous alcoholic and malolactic fermentations reduced malic acid by about 80%, while classical malolactic fermentation reduced it by 100%. Fermentations involving L. thermotolerans produced the highest lactic acid, ester and glycerol concentrations.


Sign in / Sign up

Export Citation Format

Share Document