Impact of pesticides in properties of Bradyrhizobium spp. and in the symbiotic performance with soybean

Author(s):  
Thiago Fernandes Rodrigues ◽  
Flavia Raquel Bender ◽  
Alisson Wilson Santos Sanzovo ◽  
Eduara Ferreira ◽  
Marco Antonio Nogueira ◽  
...  
Soil Research ◽  
2002 ◽  
Vol 40 (7) ◽  
pp. 1085 ◽  
Author(s):  
Tanya Cáceres ◽  
Guang-Guo Ying ◽  
Rai Kookana

There is concern about the migration and adverse impact of pesticides used in banana production systems in Ecuador on aquaculture and ecosystem health. Therefore, we studied the sorption of chlorothalonil, fenamiphos, and its 2 metabolites (fenamiphos sulfone and fenamiphos sulfoxide), by batch method on 6 surface soils from the Guayas River Basin (1–3�S, 79–81�W), a major banana production area of Ecuador. The sorption of chlorothalonil on the 6 soils was high and varied considerably as shown by the Kd values ranging from 68.50 to 152.60 L/kg. The sorption coefficients normalised with the organic carbon content of soil (Koc) for chlorothalonil ranged from 2330 to 7336 kg/L, with a mean value of 4012 kg/L. These Koc values are higher than those previously reported in the literature. The sorption of fenamiphos and its metabolites to the 6 soils varied among soils in a similar pattern. The Kd values ranged from 5.66 to 14.31�L/kg for fenamiphos, from 2.81 to 8.79 L/kg for fenamiphos sulfone, and from 0.77 to 4.00 L/kg for fenamiphos sulfoxide, respectively. In all of the soils the sorption coefficients of both metabolites of fenamiphos were lower than that for the parent compound. The Koc values ranged from 220 to 515 kg/L (mean value 371 kg/L) for fenamiphos, from 29 to 141 kg/L (mean value of 76 kg/L) for fenamiphos sulfoxide, and from 79 to 334 kg/L (mean value of 191 kg/L) for fenamiphos sulfone. Chlorothalonil had much stronger sorption than fenamiphos and its metabolites on the Ecuadorian soil. Due to lower sorption and therefore greater mobility and longer persistence of the fenamiphos metabolites, these compounds need adequate consideration during residue monitoring and assessment of potential off-site impacts on ecosystem health and aquaculture in the Guayas River Basin.


2021 ◽  
Author(s):  
Arnelle Löbbert ◽  
Sonja Schanzer ◽  
Henrik Krehenwinkel ◽  
Franz Bracher ◽  
Christoph Müller

A novel, validated QuEChERS-based GC-MS/MS method was developed, which will allow the assessment of the impact of pesticides on forest ecosystems.


2000 ◽  
Vol 14 (3) ◽  
pp. 191-200 ◽  
Author(s):  
Mohamed Hemida Abd-Alla ◽  
Shukry Ahmed Omar ◽  
Sokol Karanxha

Author(s):  
Catharine Abreu Bomfim ◽  
Lucas Gabriel Ferreira Coelho ◽  
Ieda Carvalho Mendes ◽  
Helson Mario Martins Vale ◽  
Francisco Javier Ollero ◽  
...  

2016 ◽  
Vol 29 (4) ◽  
pp. 789-795 ◽  
Author(s):  
SALOMÃO LIMA GUIMARÃES ◽  
LAURA CRISTINA REZENDE DAS NEVES ◽  
EDNA MARIA BONFIM-SILVA ◽  
DANIELA TIAGO DA SILVA CAMPOS

ABSTRACT Pigeon pea is an important protein source grown in several tropical and sub-tropical countries, and is considered a multi-purpose plant that is resistant to the conditions of the Brazilian Cerrado. Among the possible uses for cowpea, its use as a green manure, increasing soil nitrogen content through the association with diazotrophic bacteria, generically known as rhizobia, is noteworthy. The present work aimed to evaluate the efficiency of Rhizobium strains isolated from cowpea plants in the development of pigeon peas cultured in Red Latosol. The experiment was conducted in a greenhouse, using a completely randomized design with seven treatments and four replications. Treatments consisted of inoculation with four Rhizobium strains (MT8, MT15, MT16, and MT23) and one commercial inoculant comprising Bradyrhizobium spp. strains BR 2801 and BR 2003. There were two controls, one absolute (without inoculation or nitrogen fertilization) and the other with nitrogen fertilization. Each experimental plot consisted of an 8-dm3 vase containing three plants. Analyzed variables included plant height, SPAD index, number and dry weight of nodules, and shoot and root dry masses. Pigeon peas responded significantly to inoculation treatment, since all the plants inoculated with Rhizobium strains isolated from cowpea strains showed results similar to plants in the nitrogen control and commercial inoculant treatments. This demonstrates a favorable plant-bacteria interaction, which can be utilized as an alternative nitrogen source for pigeon peas.


Sign in / Sign up

Export Citation Format

Share Document