Matrix effect on chemical isotope labeling and its implication in metabolomic sample preparation for quantitative metabolomics

Metabolomics ◽  
2015 ◽  
Vol 11 (6) ◽  
pp. 1733-1742 ◽  
Author(s):  
Wei Han ◽  
Liang Li
2019 ◽  
Vol 6 (1) ◽  
pp. 30-41
Author(s):  
Ranjith Arimboor ◽  
Karunkara Ramakrishna Menon ◽  
Natarajan Ramesh Babu ◽  
Haneesh Chandran

Background:Increased consumer demand for curry leaves free from pesticides demands fast and reliable analytical methods for the analysis of pesticide residues.Objective:The optimization of a QuEChERS based sample preparation technique with improved analytical accuracy by removing interfering matrix components for LC-MS/MS analysis of pesticide residues from curry leaves.Methods:A modified QuEChERS solid phase extraction method was developed and validated for the analysis of 26 pesticides in fresh and dried curry leaves. The effects of the sample preparation steps and column retention time on the matrix suppression of analyte ions were also evaluated.Results:Validation parameters were found within an acceptable range. The matrix effect evaluation studies showed that the QuEChERS sample preparation was able to minimize the ion suppression of analytes due to co-eluting matrix of components and that a d-SPE clean up step had major role in reducing matrix effect. The gradient mobile phase with longer retention time for analytes resulted in comparatively lesser matrix effects than the isocratic mobile phase of non-polar nature. Even after the clean up, a considerable number of compounds had more than 20% reduction in their MS response in the gradient mobile phase.Conclusion:This study emphasized the need of proper sample clean up before a LC-MS/MS analysis and the usage of matrix matched standards and mobile phase that ultimately results in an appropriate analyte separation in reasonable retention times.


Metabolites ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 42 ◽  
Author(s):  
Lina Dahabiyeh ◽  
Abeer Malkawi ◽  
Xiaohang Wang ◽  
Dilek Colak ◽  
Ahmed Mujamammi ◽  
...  

Dexamethasone (Dex) is a synthetic glucocorticoid (GC) drug commonly used clinically for the treatment of several inflammatory and immune-mediated diseases. Despite its broad range of indications, the long-term use of Dex is known to be associated with specific abnormalities in several tissues and organs. In this study, the metabolomic effects on five different organs induced by the chronic administration of Dex in the Sprague–Dawley rat model were investigated using the chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS) platform, which targets the amine/phenol submetabolomes. Compared to controls, a prolonged intake of Dex resulted in significant perturbations in the levels of 492, 442, 300, 186, and 105 metabolites in the brain, skeletal muscle, liver, kidney, and heart tissues, respectively. The positively identified metabolites were mapped to diverse molecular pathways in different organs. In the brain, perturbations in protein biosynthesis, amino acid metabolism, and monoamine neurotransmitter synthesis were identified, while in the heart, pyrimidine metabolism and branched amino acid biosynthesis were the most significantly impaired pathways. In the kidney, several amino acid pathways were dysregulated, which reflected impairments in several biological functions, including gluconeogenesis and ureagenesis. Beta-alanine metabolism and uridine homeostasis were profoundly affected in liver tissues, whereas alterations of glutathione, arginine, glutamine, and nitrogen metabolism pointed to the modulation of muscle metabolism and disturbances in energy production and muscle mass in skeletal muscle. The differential expression of multiple dipeptides was most significant in the liver (down-regulated), brain (up-regulation), and kidney tissues, but not in the heart or skeletal muscle tissues. The identification of clinically relevant pathways provides holistic insights into the tissue molecular responses induced by Dex and understanding of the underlying mechanisms associated with their side effects. Our data suggest a potential role for glutathione supplementation and dipeptide modulators as novel therapeutic interventions to mitigate the side effects induced by Dex therapy.


Sign in / Sign up

Export Citation Format

Share Document