Economic assessment of conventional and conservation tillage practices in different wheat-based cropping systems of Punjab, Pakistan

2017 ◽  
Vol 24 (31) ◽  
pp. 24634-24643 ◽  
Author(s):  
Muhammad Shahzad ◽  
Mubshar Hussain ◽  
Muhammad Farooq ◽  
Shahid Farooq ◽  
Khawar Jabran ◽  
...  
2013 ◽  
Vol 27 (2) ◽  
pp. 298-304 ◽  
Author(s):  
Jessica A. Kelton ◽  
Andrew J. Price ◽  
Michael G. Patterson ◽  
C. Dale Monks ◽  
Edzard van Santen

Amaranthuscontrol in cotton can be difficult with the loss of glyphosate efficacy, especially in conservation-tillage cropping systems. Research was conduction from 2006 to 2008 at EV Smith Research Center, Shorter, AL, to determine the level of glyphosate-susceptibleAmaranthuscontrol provided by four initial tillage and herbicide treatments, including 1) moldboard plowing followed by a single-pass disking and field cultivation plus pendimethalin at 1.2 kg ai ha−1preplant incorporation (PPI), 2) two-pass disking followed by field cultivation plus pendimethalin at 1.2 kg ha−1PPI, 3) no tillage including an application of pendimethalin at 1.2 kg ha−1PRE, or 4) no tillage without pendimethalin in 2006. No further tillage practices or pendimethalin applications were utilized after study initiation. Initial tillage operations, including inversion with disking or disking twice, resulted inAmaranthusdensity of ≤ 4 plants m−2and 47 to 82% control, whereas no-tillage treatments had ≥ 4 plants m−2and 14 to 62% control. Subsequent applications of PRE herbicides included fluometuron at 1.68 kg ai ha−1or prometryn at 1.12 kg ai ha−1and provided 53 to 98% and 55 to 93% control, respectively, and reducedAmaranthusdensity compared to no PRE herbicide to < 2 plants m−2, regardless of tillage treatment. A POST application of glyphosate at 1.0 kg ae ha−1improved control in conjunction with almost all treatments in each year. Results indicate that a one-time tillage operation followed by a return to reduced tillage may aid in the reduction ofAmaranthusdensity when used with PRE-applied herbicides; however, this system will likely not provide adequate control when high population densities of glyphosate-resistantAmaranthusare present, thus highlighting the need for a highly efficacious POST herbicide system.


1996 ◽  
Vol 11 (2-3) ◽  
pp. 95-103 ◽  
Author(s):  
Richard W. Smiley

AbstractDiseases continue to be important constraints in wheat and barley conservation cropping systems in the semiarid Pacific Northwest. Several diseases are more damaging in highthan low-residue seedbeds, and in crops planted during early autumn to reduce soil erosion during winter, especially unirrigated winter wheat in rotation with summer fallow in low rainfall zones (250–400 mm). Changes in cropping systems in the region have made disease management and maintenance of yield goals and farm profitability more challenging because disease management often is more complex and expensive with conservation tillage than inversion tillage. Practices being developed to meet this challenge are reviewed for diseases that are particularly trouble some in conservation farming systems of the Pacific Northwest.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1554 ◽  
Author(s):  
Abdalla I. A. Ahmed ◽  
Ibrahim M. Eldoma ◽  
Elsadig ElMahdi A. H. Elaagip ◽  
Fujiang Hou

In dry regions, it is customary for farmers to use soil water conservation and/or water harvesting techniques. These practices have now become applicable to agriculturalists combating the adverse effects of drought on food production. In the semiarid areas of Zalingei in western Sudan, we quantified the soil erosion using traditional conservation measures, and conducted experiments in two consecutive rainy seasons (2013 and 2014). A split-split plot design was used to quantify the respective influences of each variable on reducing soil erosion: A) three gentle gradients (Slope1 (0.98%), Slope2 (1.81%), and Slope3 (3.1%)); B) two cropping systems (mono-crop and mixed-crops); and C) five indigenous conservation tillage practices—chisel ploughing (CHP), cross slope tied bonding (CSTB), contour ridge with stone bonds (CRSB), cross slope bonding (CSB), and zero tillage (ZT). Our results showed that there were significant differences between the slopes in season 2 (2014); the soil eroded at Slope3 was more than that of Slope1 and Slope2 by 71% and 27%, respectively. Over two seasons, there were no significant differences between the cropping systems. Conversely, the erosion level observed with CHP was higher than with the other practices. However, the CSTB and CSB erosion levels were only higher in season 2 when compared with those of CRSB and ZT. The study concluded that under the above conditions, the rate of soil erosion was severe and exceeded the erosion tolerance. Based on these results, in western Sudan, CRSB and ZT may be the more effective indigenous conservation practices for the protection of agricultural soils and productivity.


2013 ◽  
Vol 39 (10) ◽  
pp. 1880
Author(s):  
Long-Chang WANG ◽  
Cong-Ming ZOU ◽  
Yun-Lan ZHANG ◽  
Sai ZHANG ◽  
Xiao-Yu ZHANG ◽  
...  

2006 ◽  
Vol 38 (3) ◽  
pp. 629-643 ◽  
Author(s):  
Roland K. Roberts ◽  
Burton C. English ◽  
Qi Gao ◽  
James A. Larson

If adoption of herbicide-resistant seed and adoption of conservation-tillage practices are determined simultaneously, adoption of herbicide-resistant seed could indirectly reduce soil erosion and adoption of conservation-tillage practices could indirectly reduce residual herbicide use and increase farm profits. Our objective was to evaluate the relationship between these two technologies for Tennessee cotton production. Evidence from Bayes' theorem and a two-equation logit model suggested a simultaneous relationship. Mean elasticities for acres in herbicide-resistant seed with respect to the probability of adopting conservation-tillage practices and acres in conservation-tillage practices with respect to the probability of adopting herbicide-resistant seed were 1.74 and 0.24, respectively.


2020 ◽  
Vol 12 (3) ◽  
pp. 1062 ◽  
Author(s):  
Francis Azumah Chimsah ◽  
Liqun Cai ◽  
Jun Wu ◽  
Renzhi Zhang

Sustainable food production has long been a priority for mankind and this is being challenged by limited arable land, challenged landscapes, and higher human population growth. China started conservation farming around the 1950’s. However, main Conservation Tillage (CT) research started in 1992. Using a systematic meta-analysis approach, this review aims at examining China’s approach to CT and to characterize the main outcomes of long-term CT research across northern China. Data from organizations in charge of CT research in China showed an improvement in crop yield of at least 4% under double cropping systems and 6% under single cropping systems in dry areas of northern China. Furthermore, long-term CT practices were reported to have improved soil physical properties (soil structure, bulk density, pore size, and aggregate stability), soil nutrient levels, and reduction in greenhouse gas emission. Other benefits include significant increase in income levels and protection of the environment. Limitations to CT practice highlighted in this study include occasional reduction in crop yields during initial years of cropping, significant reduction in total N of soils, increase in N2O emission, and the need for customized machinery for its implementation. Outcomes of CT practice are ecologically and economically beneficial though its limitations are worth cogitating.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244059
Author(s):  
Safdar Ali ◽  
Fakhar Din Khan ◽  
Rehmat Ullah ◽  
Rahmat Ullah Shah ◽  
Saud Alamri ◽  
...  

Numerous cropping systems of the world are experiencing the emergence of new weed species in response to conservation agriculture. Conyza stricta Willd. is being a newly emerging weed of barley-based cropping systems in response to conservational tillage practices. Seed germination ecology of four populations (irrigated, rainfed, abandoned and ruderal habitats) was studied in laboratory and greenhouse experiments. The presence/absence of seed dormancy was inferred first, which indicated seeds were non-dormant. Seed germination was then recorded under various photoperiods, constant and alternating day/night temperatures, and pH, salinity and osmotic potential levels. Seedling emergence was observed from various seed burial depths. Seeds of all populations proved photoblastic and required 12-hour light/dark period for germination. Seeds of all populations germinated under 5–30°C constant temperature; however, peak germination was recorded under 17.22–18.11°C. Nonetheless, the highest germination was noted under 20/15°C alternating day/night temperature. Ruderal and irrigated populations better tolerated salinity and germinated under 0–500 mM salinity. Similarly, rainfed population proved more tolerant to osmotic potential than other populations. Seeds of all populations required neutral pH for the highest germination, whereas decline was noted in germination under basic and alkaline pH. Seedling emergence was retarded for seeds buried >2 cm depth and no emergence was recorded from >4 cm depth. These results add valuable information towards our understanding of seed germination ecology of C. stricta. Seed germination ability of different populations under diverse environmental conditions suspects that the species can present severe challenges in future if not managed. Deep seed burial along with effective management of the emerging seedlings seems a pragmatic option to manage the species in cultivated fields. However, immediate management strategies are needed for rest of the habitats.


Sign in / Sign up

Export Citation Format

Share Document