scholarly journals Effects of Indigenous Cultivation Practices on Soil Conservation in the Hilly Semiarid Areas of Western Sudan

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1554 ◽  
Author(s):  
Abdalla I. A. Ahmed ◽  
Ibrahim M. Eldoma ◽  
Elsadig ElMahdi A. H. Elaagip ◽  
Fujiang Hou

In dry regions, it is customary for farmers to use soil water conservation and/or water harvesting techniques. These practices have now become applicable to agriculturalists combating the adverse effects of drought on food production. In the semiarid areas of Zalingei in western Sudan, we quantified the soil erosion using traditional conservation measures, and conducted experiments in two consecutive rainy seasons (2013 and 2014). A split-split plot design was used to quantify the respective influences of each variable on reducing soil erosion: A) three gentle gradients (Slope1 (0.98%), Slope2 (1.81%), and Slope3 (3.1%)); B) two cropping systems (mono-crop and mixed-crops); and C) five indigenous conservation tillage practices—chisel ploughing (CHP), cross slope tied bonding (CSTB), contour ridge with stone bonds (CRSB), cross slope bonding (CSB), and zero tillage (ZT). Our results showed that there were significant differences between the slopes in season 2 (2014); the soil eroded at Slope3 was more than that of Slope1 and Slope2 by 71% and 27%, respectively. Over two seasons, there were no significant differences between the cropping systems. Conversely, the erosion level observed with CHP was higher than with the other practices. However, the CSTB and CSB erosion levels were only higher in season 2 when compared with those of CRSB and ZT. The study concluded that under the above conditions, the rate of soil erosion was severe and exceeded the erosion tolerance. Based on these results, in western Sudan, CRSB and ZT may be the more effective indigenous conservation practices for the protection of agricultural soils and productivity.

1996 ◽  
Vol 11 (2-3) ◽  
pp. 95-103 ◽  
Author(s):  
Richard W. Smiley

AbstractDiseases continue to be important constraints in wheat and barley conservation cropping systems in the semiarid Pacific Northwest. Several diseases are more damaging in highthan low-residue seedbeds, and in crops planted during early autumn to reduce soil erosion during winter, especially unirrigated winter wheat in rotation with summer fallow in low rainfall zones (250–400 mm). Changes in cropping systems in the region have made disease management and maintenance of yield goals and farm profitability more challenging because disease management often is more complex and expensive with conservation tillage than inversion tillage. Practices being developed to meet this challenge are reviewed for diseases that are particularly trouble some in conservation farming systems of the Pacific Northwest.


2014 ◽  
Vol 6 (4) ◽  
pp. 125 ◽  
Author(s):  
Anne Karuma ◽  
Peter Mtakwa ◽  
Nyambilila Amuri ◽  
Charles K. Gachene ◽  
Patrick Gicheru

Soil water conservation through tillage is one of the appropriate ways of addressing soil moisture deficit in rainfed agriculture. This study evaluated the effects of tillage practices on soil moisture conservation and crop yields in Mwala District, Eastern Kenya during the long rains (LR) and short rains (SR) of 2012/13. Six tillage systems: Disc plough (MB), Disc plough and harrowing (MBH), Ox-ploughing (OX), Subsoiling – ripping (SR), Hand hoe and Tied Ridges (HTR) and Hand hoe only (H) and, three cropping systems namely, sole maize, sole bean and maize - bean intercrop, were investigated in a split-plot design with four replicates. Data on soil water content was monitored at different weeks after planting and the crop yields at end of each growing season. A three-season average shows that soil water content and crop yields were higher in conventional tillage methods compared to the conservation tillage methods. Long term tillage experiments are thus required at different locations, under various environmental and soil conditions to validate the study findings.


2013 ◽  
Vol 27 (2) ◽  
pp. 298-304 ◽  
Author(s):  
Jessica A. Kelton ◽  
Andrew J. Price ◽  
Michael G. Patterson ◽  
C. Dale Monks ◽  
Edzard van Santen

Amaranthuscontrol in cotton can be difficult with the loss of glyphosate efficacy, especially in conservation-tillage cropping systems. Research was conduction from 2006 to 2008 at EV Smith Research Center, Shorter, AL, to determine the level of glyphosate-susceptibleAmaranthuscontrol provided by four initial tillage and herbicide treatments, including 1) moldboard plowing followed by a single-pass disking and field cultivation plus pendimethalin at 1.2 kg ai ha−1preplant incorporation (PPI), 2) two-pass disking followed by field cultivation plus pendimethalin at 1.2 kg ha−1PPI, 3) no tillage including an application of pendimethalin at 1.2 kg ha−1PRE, or 4) no tillage without pendimethalin in 2006. No further tillage practices or pendimethalin applications were utilized after study initiation. Initial tillage operations, including inversion with disking or disking twice, resulted inAmaranthusdensity of ≤ 4 plants m−2and 47 to 82% control, whereas no-tillage treatments had ≥ 4 plants m−2and 14 to 62% control. Subsequent applications of PRE herbicides included fluometuron at 1.68 kg ai ha−1or prometryn at 1.12 kg ai ha−1and provided 53 to 98% and 55 to 93% control, respectively, and reducedAmaranthusdensity compared to no PRE herbicide to < 2 plants m−2, regardless of tillage treatment. A POST application of glyphosate at 1.0 kg ae ha−1improved control in conjunction with almost all treatments in each year. Results indicate that a one-time tillage operation followed by a return to reduced tillage may aid in the reduction ofAmaranthusdensity when used with PRE-applied herbicides; however, this system will likely not provide adequate control when high population densities of glyphosate-resistantAmaranthusare present, thus highlighting the need for a highly efficacious POST herbicide system.


Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 50 ◽  
Author(s):  
Hamadi ◽  
Larid ◽  
Gómez ◽  
Ouabel

Located in the North-West of Algeria, the foothills of Dahra are affected by the problems of water erosion where agricultural soils are under severe degradation due to the mismatch influence between a semi-arid climate and the prevailing cropping systems presenting a threat to sustainable rural development in the region. After a survey on the field, a localization and prioritization of different agroforestry systems (AFS) practiced, an overview bioclimatic and physico-chemical analyzes of soil has been made for comparison between systems. The results show that in the absence of systems with consistent vegetation cover, the foothills soils located on slopes even weak undergoing a harmful human activities have become the prey of rainwater. Given that it doesn't exist at agricultural exploitations level a miracle system for the development and the soils and water management, the association of trees with crops (AFS) allowed in certain situations to improve soils protection, their humidity, their fertility and the socioeconomic situation of farmers. As well, the analysis of statements on the tree resource of agricultural exploitations we has allowed to assess the agroforestry systems efficiency awaited, considering their inappropriate management. As the fight against water erosion is only an aspect of soils and water conservation, the agroforestry considered in its largest sense must contain at the same time, the control of water erosion by a permanent plant cover, the maintaining soils fertility and the biodiversity to ensure a sustainable foothills agriculture which depends on the maintenance of rural populations.


2017 ◽  
Vol 24 (31) ◽  
pp. 24634-24643 ◽  
Author(s):  
Muhammad Shahzad ◽  
Mubshar Hussain ◽  
Muhammad Farooq ◽  
Shahid Farooq ◽  
Khawar Jabran ◽  
...  

2021 ◽  
Author(s):  
Mara L.C. Cloutier ◽  
Tiffanie Alcaide ◽  
Sjoerd W. Duiker ◽  
Mary Ann Bruns

In agriculture, adoption of reduced tillage practices is a widespread adaptation to global change. The cessation of plowing reduces erosion, slows soil organic matter oxidation, and promotes soil carbon accrual, but it can also result in the development of potential N2O spots from denitrification activity. In this study, we hypothesized that 16S rRNA-based composition of bacterial-archaeal assemblages would differ in agricultural soils subjected for forty years to a range of disturbance intensities, with annual moldboard plowing (MP) being the most intensive. No-till planting (NT) represented tillage management with the least amount of disturbance, while chisel-disking (CD), a type of conservation tillage, was intermediate. All long-term tillage plots had been planted with the same crops grown in a three-year crop rotation (corn-soybean-small grain+cover crop), and both bulk and rhizosphere soils were analyzed from the corn and soybean years. We also evaluated denitrification gene markers by quantitative PCR at multiple points (three growth stages of corn and soybean). Tillage intensity, soil compartment (bulk or rhizosphere), crop year, growth stage, and interactions all exerted effects on community diversity and composition. Compared to MP and CD, NT soils had lower abundances of denitrification genes, higher abundances of nitrate ammonification genes, and higher abundances of taxa at the family level associated with the inorganic N cycle processes of archaeal nitrification and anammox. Soybean rhizospheres exerted stronger selection on community composition and diversity relative to corn rhizospheres. Interactions between crop year, management, and soil compartment had differential impacts on N gene abundances related to denitrification and nitrate ammonification. Opportunities for managing hot spots or hot moments for N losses from agricultural soils may be discernible through improved understanding of tillage intensity effects, although weather and crop type are also important factors influencing how tillage influences microbial assemblages and N use.


Soil Research ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 667 ◽  
Author(s):  
Xiaoyan Wang ◽  
Huanwen Gao ◽  
J. N. Tullberg ◽  
Hongwen Li ◽  
Nikolaus Kuhn ◽  
...  

This paper reports the outcome of 5 years of field plot runoff monitoring, 2 years of water erosion measurement, and a rainfall simulation experiment on moderately sloping farmland on the loess plateau of north-west China. The objective was to test different conservation tillage systems compared with the control treatment, conventional mouldboard plough practice (CK). Tillage, residue cover, and compaction effects were assessed in terms of runoff and soil erosion. Results from the runoff plots showed that conservation tillage, with more residue cover, less compaction, and less soil disturbance, could substantially reduce runoff and soil erosion compared with the control. No tillage with residue cover and no compaction produced the least runoff and soil erosion. Compared with the control, it reduced runoff and soil erosion by about 40% and 80%, respectively. At the start of the experiment, residue cover appeared to be the most important factor affecting soil and water conservation, particularly when antecedent soil moisture was limited. With the accumulation of tractor wheeling effects over the course of the experiment, soil compaction appeared to become a more important factor affecting runoff. Rainfall simulation was then used to assess the effect of non-inverting surface tillage and different levels of residue cover and wheel compaction on infiltration and runoff. This confirmed that wheel compaction effects could be greater than those of tillage and residue cover, at least under the 82.5 mm/h rainfall rate produced by the simulator. The wheeling effect was particularly large when the treatment was applied to wet soil, and severe even after wheeling by small tractors.


Sign in / Sign up

Export Citation Format

Share Document