Screening of the bioactive compounds in Amphora coffeaeformis extract and evaluating its protective effects against deltamethrin toxicity in rats

Author(s):  
Marwa E. Hassan ◽  
Abo El-Khair B. El-Sayed ◽  
Mosaad A. Abdel-Wahhab
Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 37 ◽  
Author(s):  
José S. Câmara ◽  
Bianca R. Albuquerque ◽  
Joselin Aguiar ◽  
Rúbia C. G. Corrêa ◽  
João L. Gonçalves ◽  
...  

Experimental studies have provided convincing evidence that food bioactive compounds (FBCs) have a positive biological impact on human health, exerting protective effects against non-communicable diseases (NCD) including cancer and cardiovascular (CVDs), metabolic, and neurodegenerative disorders (NDDs). These benefits have been associated with the presence of secondary metabolites, namely polyphenols, glucosinolates, carotenoids, terpenoids, alkaloids, saponins, vitamins, and fibres, among others, derived from their antioxidant, antiatherogenic, anti-inflammatory, antimicrobial, antithrombotic, cardioprotective, and vasodilator properties. Polyphenols as one of the most abundant classes of bioactive compounds present in plant-based foods emerge as a promising approach for the development of efficacious preventive agents against NCDs with reduced side effects. The aim of this review is to present comprehensive and deep insights into the potential of polyphenols, from their chemical structure classification and biosynthesis to preventive effects on NCDs, namely cancer, CVDs, and NDDS. The challenge of polyphenols bioavailability and bioaccessibility will be explored in addition to useful industrial and environmental applications. Advanced and emerging extraction techniques will be highlighted and the high-resolution analytical techniques used for FBCs characterization, identification, and quantification will be considered.


2018 ◽  
Vol 14 (2) ◽  
Author(s):  
Jun Yu ◽  
Zijian Shangguan ◽  
Xingju Yang ◽  
Dan Sun ◽  
Baoqing Zhu ◽  
...  

AbstractDifferent drying methods, including hot air drying (HAD), freeze drying (FD), spray drying and vacuum drying (VD), were investigated to determine their influence on the chromatic coordinates, phenolics, anthocyanins and antioxidant activities of dried red raspberry (Rubus lambertianus). Pelargonidin-3-O-glucoside and catechin were found to be the main anthocyanin and non-anthocyanin phenolics, respectively, in fresh red raspberry. The most effective method for controlling browning was FD. The highest protective effects against bioactive compounds were observed in freeze-dried powders, when measuring the total anthocyanins, the scavenging of DPPH (1,1-diphenyl-2-picrylhydrazyl) and hydroxyl radicals and the inhibition effects on lard oxidation. HAD was effective for the preservation of total phenolics, while VD was useful for protecting catechin and procyanidin B1.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1510 ◽  
Author(s):  
Katharina Miller ◽  
Walter Feucht ◽  
Markus Schmid

Strawberries and blueberries are two of the most commonly consumed berries. Berries, in general, are characterized by their highly nutritive compounds, including minerals, vitamins, fatty acids, and dietary fiber, as well as their high content and wide diversity of bioactive compounds, such as phenolic compounds and organic acids. These bioactive compounds have been associated with protective effects against chronic diseases, such as cardiovascular disease, cancer, Alzheimer’s and other disorders. In this paper 16 human intervention studies investigating the beneficial health effects of dietary strawberry or blueberry consumption on inflammation, cardiovascular disease or cognitive function and mental health are reviewed.


2010 ◽  
Vol 23 (1) ◽  
pp. 65-134 ◽  
Author(s):  
Anthony Fardet

Epidemiological studies have clearly shown that whole-grain cereals can protect against obesity, diabetes, CVD and cancers. The specific effects of food structure (increased satiety, reduced transit time and glycaemic response), fibre (improved faecal bulking and satiety, viscosity and SCFA production, and/or reduced glycaemic response) and Mg (better glycaemic homeostasis through increased insulin secretion), together with the antioxidant and anti-carcinogenic properties of numerous bioactive compounds, especially those in the bran and germ (minerals, trace elements, vitamins, carotenoids, polyphenols and alkylresorcinols), are today well-recognised mechanisms in this protection. Recent findings, the exhaustive listing of bioactive compounds found in whole-grain wheat, their content in whole-grain, bran and germ fractions and their estimated bioavailability, have led to new hypotheses. The involvement of polyphenols in cell signalling and gene regulation, and of sulfur compounds, lignin and phytic acid should be considered in antioxidant protection. Whole-grain wheat is also a rich source of methyl donors and lipotropes (methionine, betaine, choline, inositol and folates) that may be involved in cardiovascular and/or hepatic protection, lipid metabolism and DNA methylation. Potential protective effects of bound phenolic acids within the colon, of the B-complex vitamins on the nervous system and mental health, of oligosaccharides as prebiotics, of compounds associated with skeleton health, and of other compounds such as α-linolenic acid, policosanol, melatonin, phytosterols andpara-aminobenzoic acid also deserve to be studied in more depth. Finally, benefits of nutrigenomics to study complex physiological effects of the ‘whole-grain package’, and the most promising ways for improving the nutritional quality of cereal products are discussed.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Zhi-Yong Qi ◽  
Jia-Ying Zhao ◽  
Fang-Jun Lin ◽  
Wan-Lai Zhou ◽  
Ren-You Gan

Ficus pumila L. has been used as a functional plant for a long time in East Asia, especially its fruits, as a dietary component in Japan and parts of China. A series of bioactive compounds, including phenolic acids, flavonoids, terpenoids, alcohols, and steroids, have been extracted from the stems, leaves, flowers, and fruits of Ficus pumila L. Accumulated studies have demonstrated that Ficus pumila L. has multiple therapeutic activities, including antioxidant, anti-inflammatory, antibacterial, antitumor, hypoglycemic, and cardiovascular protective effects. Moreover, Ficus pumila L. has extensive applications, such as in the food industry and ecological city construction. Herein, we summarize the latest knowledge about the bioactive compounds and therapeutic activities of Ficus pumila L., and its applications in the food industry and ecological city construction are also discussed. We hope that this comprehensive review can attract more attention to Ficus pumila L. and be helpful for its further applications.


Sign in / Sign up

Export Citation Format

Share Document